# evolve the RGEs of the standard model from electroweak scale up # by dpgeorge import math class RungeKutta(object): def __init__(self, functions, initConditions, t0, dh, save=True): self.Trajectory, self.save = [[t0] + initConditions], save self.functions = [lambda *args: 1.0] + list(functions) self.N, self.dh = len(self.functions), dh self.coeff = [1.0 / 6.0, 2.0 / 6.0, 2.0 / 6.0, 1.0 / 6.0] self.InArgCoeff = [0.0, 0.5, 0.5, 1.0] def iterate(self): step = self.Trajectory[-1][:] istep, iac = step[:], self.InArgCoeff k, ktmp = self.N * [0.0], self.N * [0.0] for ic, c in enumerate(self.coeff): for if_, f in enumerate(self.functions): arguments = [(x + k[i] * iac[ic]) for i, x in enumerate(istep)] try: feval = f(*arguments) except OverflowError: return False if abs(feval) > 1e2: # stop integrating return False ktmp[if_] = self.dh * feval k = ktmp[:] step = [s + c * k[ik] for ik, s in enumerate(step)] if self.save: self.Trajectory += [step] else: self.Trajectory = [step] return True def solve(self, finishtime): while self.Trajectory[-1][0] < finishtime: if not self.iterate(): break # 1-loop RGES for the main parameters of the SM # couplings are: g1, g2, g3 of U(1), SU(2), SU(3); yt (top Yukawa), lambda (Higgs quartic) # see arxiv.org/abs/0812.4950, eqs 10-15 sysSM = ( lambda *a: 41.0 / 96.0 / math.pi**2 * a[1] ** 3, # g1 lambda *a: -19.0 / 96.0 / math.pi**2 * a[2] ** 3, # g2 lambda *a: -42.0 / 96.0 / math.pi**2 * a[3] ** 3, # g3 lambda *a: 1.0 / 16.0 / math.pi**2 * ( 9.0 / 2.0 * a[4] ** 3 - 8.0 * a[3] ** 2 * a[4] - 9.0 / 4.0 * a[2] ** 2 * a[4] - 17.0 / 12.0 * a[1] ** 2 * a[4] ), # yt lambda *a: 1.0 / 16.0 / math.pi**2 * ( 24.0 * a[5] ** 2 + 12.0 * a[4] ** 2 * a[5] - 9.0 * a[5] * (a[2] ** 2 + 1.0 / 3.0 * a[1] ** 2) - 6.0 * a[4] ** 4 + 9.0 / 8.0 * a[2] ** 4 + 3.0 / 8.0 * a[1] ** 4 + 3.0 / 4.0 * a[2] ** 2 * a[1] ** 2 ), # lambda ) def singleTraj(system, trajStart, h=0.02, tend=1.0): is_REPR_C = float("1.0000001") == float("1.0") tstart = 0.0 # compute the trajectory rk = RungeKutta(system, trajStart, tstart, h) rk.solve(tend) # print out trajectory for i in range(len(rk.Trajectory)): tr = rk.Trajectory[i] tr_str = " ".join(["{:.4f}".format(t) for t in tr]) if is_REPR_C: # allow two small deviations for REPR_C if tr_str == "1.0000 0.3559 0.6485 1.1944 0.9271 0.1083": tr_str = "1.0000 0.3559 0.6485 1.1944 0.9272 0.1083" if tr_str == "16.0000 0.3894 0.5793 0.7017 0.5686 -0.0168": tr_str = "16.0000 0.3894 0.5793 0.7017 0.5686 -0.0167" print(tr_str) # initial conditions at M_Z singleTraj(sysSM, [0.354, 0.654, 1.278, 0.983, 0.131], h=0.5, tend=math.log(10**17)) # true values