/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2021 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/mphal.h" #include "py/runtime.h" #include "py/mperrno.h" #include "extmod/vfs.h" #include "modrp2.h" #include "hardware/flash.h" #include "pico/binary_info.h" #include "rp2_psram.h" #ifdef PICO_RP2350 #include "hardware/structs/ioqspi.h" #include "hardware/structs/qmi.h" #else #include "hardware/structs/ssi.h" #endif #define BLOCK_SIZE_BYTES (FLASH_SECTOR_SIZE) // Size of buffer for flash writes from PSRAM, since they are mutually exclusive #define COPY_BUFFER_SIZE_BYTES (FLASH_PAGE_SIZE) static_assert(MICROPY_HW_ROMFS_BYTES % 4096 == 0, "ROMFS size must be a multiple of 4K"); static_assert(MICROPY_HW_FLASH_STORAGE_BYTES % 4096 == 0, "Flash storage size must be a multiple of 4K"); #ifndef MICROPY_HW_FLASH_MAX_FREQ // Emulate Pico SDK's SYS_CLK_HZ / PICO_FLASH_SPI_CLKDIV behaviour by default. // On RP2040 if PICO_USE_FASTEST_SUPPORTED_CLOCK is set then SYS_CLK_HZ can be // 200MHz, potentially putting timings derived from PICO_FLASH_SPI_CLKDIV // out of range. #ifdef PICO_FLASH_SPI_CLKDIV #define MICROPY_HW_FLASH_MAX_FREQ (SYS_CLK_HZ / PICO_FLASH_SPI_CLKDIV) #else // A default PICO_FLASH_SPI_CLKDIV of 4 is set in boot2_generic_03h.S #define MICROPY_HW_FLASH_MAX_FREQ (SYS_CLK_HZ / 4) #endif #endif #ifndef MICROPY_HW_FLASH_STORAGE_BASE #define MICROPY_HW_FLASH_STORAGE_BASE (PICO_FLASH_SIZE_BYTES - MICROPY_HW_FLASH_STORAGE_BYTES) #endif // Put ROMFS at the upper end of the code space. #define MICROPY_HW_ROMFS_BASE (MICROPY_HW_FLASH_STORAGE_BASE - MICROPY_HW_ROMFS_BYTES) static_assert(MICROPY_HW_FLASH_STORAGE_BYTES <= PICO_FLASH_SIZE_BYTES, "MICROPY_HW_FLASH_STORAGE_BYTES too big"); static_assert(MICROPY_HW_FLASH_STORAGE_BASE + MICROPY_HW_FLASH_STORAGE_BYTES <= PICO_FLASH_SIZE_BYTES, "MICROPY_HW_FLASH_STORAGE_BYTES too big"); typedef struct _rp2_flash_obj_t { mp_obj_base_t base; uint32_t flash_base; uint32_t flash_size; } rp2_flash_obj_t; #if MICROPY_HW_ROMFS_BYTES > 0 static rp2_flash_obj_t rp2_flash_romfs_obj = { .base = { &rp2_flash_type }, .flash_base = MICROPY_HW_ROMFS_BASE, .flash_size = MICROPY_HW_ROMFS_BYTES, }; #endif static rp2_flash_obj_t rp2_flash_obj = { .base = { &rp2_flash_type }, .flash_base = MICROPY_HW_FLASH_STORAGE_BASE, .flash_size = MICROPY_HW_FLASH_STORAGE_BYTES, }; // Tag the flash drive in the binary as readable/writable (but not reformatable) bi_decl(bi_block_device( BINARY_INFO_TAG_MICROPYTHON, "MicroPython", XIP_BASE + MICROPY_HW_FLASH_STORAGE_BASE, MICROPY_HW_FLASH_STORAGE_BYTES, NULL, BINARY_INFO_BLOCK_DEV_FLAG_READ | BINARY_INFO_BLOCK_DEV_FLAG_WRITE | BINARY_INFO_BLOCK_DEV_FLAG_PT_UNKNOWN)); // This is a workaround to pico-sdk #2201: https://github.com/raspberrypi/pico-sdk/issues/2201 // which means the multicore_lockout_victim_is_initialized returns true even after core1 is reset. static bool use_multicore_lockout(void) { return multicore_lockout_victim_is_initialized(1 - get_core_num()) #if MICROPY_PY_THREAD && core1_entry != NULL #endif ; } // Function to set the flash divisor to the correct divisor, assumes interrupts disabled // and core1 locked out if relevant. static void __no_inline_not_in_flash_func(rp2_flash_set_timing_internal)(int clock_hz) { // Use the minimum divisor based upon our target MICROPY_HW_FLASH_MAX_FREQ int divisor = (clock_hz + MICROPY_HW_FLASH_MAX_FREQ - 1) / MICROPY_HW_FLASH_MAX_FREQ; #if PICO_RP2350 // Make sure flash is deselected - QMI doesn't appear to have a busy flag(!) while ((ioqspi_hw->io[1].status & IO_QSPI_GPIO_QSPI_SS_STATUS_OUTTOPAD_BITS) != IO_QSPI_GPIO_QSPI_SS_STATUS_OUTTOPAD_BITS) { ; } // RX delay equal to the divisor means sampling at the same time as the next falling edge of SCK after the // falling edge that generated the data. This is pretty tight at 133MHz but seems to work with the Winbond flash chips. const int rxdelay = divisor; qmi_hw->m[0].timing = (1 << QMI_M0_TIMING_COOLDOWN_LSB) | rxdelay << QMI_M1_TIMING_RXDELAY_LSB | divisor << QMI_M1_TIMING_CLKDIV_LSB; // Force a read through XIP to ensure the timing is applied volatile uint32_t *ptr = (volatile uint32_t *)0x14000000; (void)*ptr; #else // RP2040 SSI hardware only supports even divisors if (divisor & 1) { divisor += 1; } // Wait for SSI not busy while (ssi_hw->sr & SSI_SR_BUSY_BITS) { ; } // Disable, set the new divisor, and re-enable hw_clear_bits(&ssi_hw->ssienr, SSI_SSIENR_SSI_EN_BITS); ssi_hw->baudr = divisor; hw_set_bits(&ssi_hw->ssienr, SSI_SSIENR_SSI_EN_BITS); #endif } // Flash erase and write must run with interrupts disabled and the other core suspended, // because the XIP bit gets disabled. static uint32_t begin_critical_flash_section(void) { if (use_multicore_lockout()) { multicore_lockout_start_blocking(); } uint32_t state = save_and_disable_interrupts(); #if MICROPY_HW_ENABLE_PSRAM // We're about to invalidate the XIP cache, clean it first to commit any dirty writes to PSRAM // Use the upper 16k of the maintenance space (0x1bffc000 through 0x1bffffff) to workaround // incorrect behaviour of the XIP clean operation, where it also alters the tag of the associated // cache line: https://forums.raspberrypi.com/viewtopic.php?t=378249#p2263677 volatile uint8_t *maintenance_ptr = (volatile uint8_t *)(XIP_SRAM_BASE + (XIP_MAINTENANCE_BASE - XIP_BASE)); for (int i = 1; i < 16 * 1024; i += 8) { maintenance_ptr[i] = 0; } #endif return state; } static void end_critical_flash_section(uint32_t state) { // The ROM function to program flash will have reset flash and PSRAM timings to defaults rp2_flash_set_timing_internal(clock_get_hz(clk_sys)); #if MICROPY_HW_ENABLE_PSRAM psram_init(MICROPY_HW_PSRAM_CS_PIN); #endif restore_interrupts(state); if (use_multicore_lockout()) { multicore_lockout_end_blocking(); } } static mp_obj_t rp2_flash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { // Parse arguments enum { ARG_start, ARG_len }; static const mp_arg_t allowed_args[] = { { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if (args[ARG_start].u_int == -1 && args[ARG_len].u_int == -1) { #ifndef NDEBUG extern char __flash_binary_end; assert((uintptr_t)&__flash_binary_end - XIP_BASE <= MICROPY_HW_FLASH_STORAGE_BASE); #endif // Default singleton object that accesses entire flash return MP_OBJ_FROM_PTR(&rp2_flash_obj); } rp2_flash_obj_t *self = mp_obj_malloc(rp2_flash_obj_t, &rp2_flash_type); mp_int_t start = args[ARG_start].u_int; if (start == -1) { start = 0; } else if (!(0 <= start && start < MICROPY_HW_FLASH_STORAGE_BYTES && start % BLOCK_SIZE_BYTES == 0)) { mp_raise_ValueError(NULL); } mp_int_t len = args[ARG_len].u_int; if (len == -1) { len = MICROPY_HW_FLASH_STORAGE_BYTES - start; } else if (!(0 < len && start + len <= MICROPY_HW_FLASH_STORAGE_BYTES && len % BLOCK_SIZE_BYTES == 0)) { mp_raise_ValueError(NULL); } self->flash_base = MICROPY_HW_FLASH_STORAGE_BASE + start; self->flash_size = len; return MP_OBJ_FROM_PTR(self); } static mp_int_t rp2_flash_get_buffer(mp_obj_t self_in, mp_buffer_info_t *bufinfo, mp_uint_t flags) { rp2_flash_obj_t *self = MP_OBJ_TO_PTR(self_in); if (flags == MP_BUFFER_READ) { bufinfo->buf = (void *)(XIP_BASE + self->flash_base); bufinfo->len = self->flash_size; bufinfo->typecode = 'B'; return 0; } else { // Write unsupported. return 1; } } static mp_obj_t rp2_flash_readblocks(size_t n_args, const mp_obj_t *args) { rp2_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t offset = mp_obj_get_int(args[1]) * BLOCK_SIZE_BYTES; mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE); if (n_args == 4) { offset += mp_obj_get_int(args[3]); } memcpy(bufinfo.buf, (void *)(XIP_BASE + self->flash_base + offset), bufinfo.len); // mp_event_handle_nowait() is called here to avoid a fail in registering // USB at boot time, if the board is busy loading files or scanning the file // system. mp_event_handle_nowait() will call the TinyUSB task if needed. mp_event_handle_nowait(); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_flash_readblocks_obj, 3, 4, rp2_flash_readblocks); static mp_obj_t rp2_flash_writeblocks(size_t n_args, const mp_obj_t *args) { rp2_flash_obj_t *self = MP_OBJ_TO_PTR(args[0]); uint32_t offset = mp_obj_get_int(args[1]) * BLOCK_SIZE_BYTES; mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ); if (n_args == 3) { mp_uint_t atomic_state = begin_critical_flash_section(); flash_range_erase(self->flash_base + offset, bufinfo.len); end_critical_flash_section(atomic_state); mp_event_handle_nowait(); // TODO check return value } else { offset += mp_obj_get_int(args[3]); } // If copying from SRAM, can write direct to flash. // If copying from PSRAM/flash, use an SRAM buffer and write in chunks. #if MICROPY_HW_ENABLE_PSRAM bool write_direct = (uintptr_t)bufinfo.buf >= SRAM_BASE; #else bool write_direct = true; #endif if (write_direct) { // If copying from SRAM, write direct mp_uint_t atomic_state = begin_critical_flash_section(); flash_range_program(self->flash_base + offset, bufinfo.buf, bufinfo.len); end_critical_flash_section(atomic_state); mp_event_handle_nowait(); } #if MICROPY_HW_ENABLE_PSRAM else { size_t bytes_left = bufinfo.len; size_t bytes_offset = 0; static uint8_t copy_buffer[COPY_BUFFER_SIZE_BYTES] = {0}; while (bytes_left) { memcpy(copy_buffer, bufinfo.buf + bytes_offset, MIN(bytes_left, COPY_BUFFER_SIZE_BYTES)); mp_uint_t atomic_state = begin_critical_flash_section(); flash_range_program(self->flash_base + offset + bytes_offset, copy_buffer, MIN(bytes_left, COPY_BUFFER_SIZE_BYTES)); end_critical_flash_section(atomic_state); bytes_offset += COPY_BUFFER_SIZE_BYTES; if (bytes_left <= COPY_BUFFER_SIZE_BYTES) { break; } bytes_left -= COPY_BUFFER_SIZE_BYTES; mp_event_handle_nowait(); } } #endif // TODO check return value return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2_flash_writeblocks_obj, 3, 4, rp2_flash_writeblocks); static mp_obj_t rp2_flash_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) { rp2_flash_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_int_t cmd = mp_obj_get_int(cmd_in); switch (cmd) { case MP_BLOCKDEV_IOCTL_INIT: return MP_OBJ_NEW_SMALL_INT(0); case MP_BLOCKDEV_IOCTL_DEINIT: return MP_OBJ_NEW_SMALL_INT(0); case MP_BLOCKDEV_IOCTL_SYNC: return MP_OBJ_NEW_SMALL_INT(0); case MP_BLOCKDEV_IOCTL_BLOCK_COUNT: return MP_OBJ_NEW_SMALL_INT(self->flash_size / BLOCK_SIZE_BYTES); case MP_BLOCKDEV_IOCTL_BLOCK_SIZE: return MP_OBJ_NEW_SMALL_INT(BLOCK_SIZE_BYTES); case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: { uint32_t offset = mp_obj_get_int(arg_in) * BLOCK_SIZE_BYTES; mp_uint_t atomic_state = begin_critical_flash_section(); flash_range_erase(self->flash_base + offset, BLOCK_SIZE_BYTES); end_critical_flash_section(atomic_state); // TODO check return value return MP_OBJ_NEW_SMALL_INT(0); } default: return mp_const_none; } } static MP_DEFINE_CONST_FUN_OBJ_3(rp2_flash_ioctl_obj, rp2_flash_ioctl); static const mp_rom_map_elem_t rp2_flash_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&rp2_flash_readblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&rp2_flash_writeblocks_obj) }, { MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&rp2_flash_ioctl_obj) }, }; static MP_DEFINE_CONST_DICT(rp2_flash_locals_dict, rp2_flash_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( rp2_flash_type, MP_QSTR_Flash, MP_TYPE_FLAG_NONE, make_new, rp2_flash_make_new, buffer, rp2_flash_get_buffer, locals_dict, &rp2_flash_locals_dict ); #if MICROPY_VFS_ROM_IOCTL mp_obj_t mp_vfs_rom_ioctl(size_t n_args, const mp_obj_t *args) { switch (mp_obj_get_int(args[0])) { #if MICROPY_HW_ROMFS_BYTES > 0 case MP_VFS_ROM_IOCTL_GET_NUMBER_OF_SEGMENTS: return MP_OBJ_NEW_SMALL_INT(1); case MP_VFS_ROM_IOCTL_GET_SEGMENT: return MP_OBJ_FROM_PTR(&rp2_flash_romfs_obj); #endif default: return MP_OBJ_NEW_SMALL_INT(-MP_EINVAL); } } #endif // Modify the flash timing. Ensure flash access is suspended while // the timings are altered. void rp2_flash_set_timing_for_freq(int clock_hz) { if (multicore_lockout_victim_is_initialized(1 - get_core_num())) { multicore_lockout_start_blocking(); } uint32_t state = save_and_disable_interrupts(); rp2_flash_set_timing_internal(clock_hz); restore_interrupts(state); if (multicore_lockout_victim_is_initialized(1 - get_core_num())) { multicore_lockout_end_blocking(); } } void rp2_flash_set_timing(void) { rp2_flash_set_timing_for_freq(clock_get_hz(clk_sys)); }