/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 "Eric Poulsen" * Copyright (c) 2024 Damien P. George * * Based on the ESP IDF example code which is Public Domain / CC0 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is intended to closely match extmod/network_ppp_lwip.c. Changes can // and should probably be applied to both files. Compare them directly by using: // git diff --no-index extmod/network_ppp_lwip.c ports/esp32/network_ppp.c #include "py/runtime.h" #include "py/mphal.h" #include "py/stream.h" #if defined(CONFIG_ESP_NETIF_TCPIP_LWIP) && defined(CONFIG_LWIP_PPP_SUPPORT) #include "lwip/dns.h" #include "netif/ppp/ppp.h" #include "netif/ppp/pppapi.h" #include "netif/ppp/pppos.h" // Includes for port-specific changes compared to network_ppp_lwip.c #include "shared/netutils/netutils.h" #include "ppp_set_auth.h" // Enable this to see the serial data going between the PPP layer. #define PPP_TRACE_IN_OUT (0) typedef enum { STATE_INACTIVE, STATE_ACTIVE, STATE_ERROR, STATE_CONNECTING, STATE_CONNECTED, } network_ppp_state_t; typedef struct _network_ppp_obj_t { mp_obj_base_t base; network_ppp_state_t state; int error_code; mp_obj_t stream; ppp_pcb *pcb; struct netif netif; } network_ppp_obj_t; const mp_obj_type_t esp_network_ppp_lwip_type; static mp_obj_t network_ppp___del__(mp_obj_t self_in); static void network_ppp_stream_uart_irq_disable(network_ppp_obj_t *self) { if (self->stream == mp_const_none) { return; } // Disable UART IRQ. mp_obj_t dest[3]; mp_load_method(self->stream, MP_QSTR_irq, dest); dest[2] = mp_const_none; mp_call_method_n_kw(1, 0, dest); } static void network_ppp_status_cb(ppp_pcb *pcb, int err_code, void *ctx) { network_ppp_obj_t *self = ctx; switch (err_code) { case PPPERR_NONE: self->state = STATE_CONNECTED; break; case PPPERR_USER: if (self->state >= STATE_ERROR) { // Indicate that we are no longer connected and thus // only need to free the PPP PCB, not close it. self->state = STATE_ACTIVE; } // Clean up the PPP PCB. network_ppp___del__(MP_OBJ_FROM_PTR(self)); break; default: self->state = STATE_ERROR; self->error_code = err_code; break; } } static mp_obj_t network_ppp_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { mp_arg_check_num(n_args, n_kw, 1, 1, false); mp_obj_t stream = all_args[0]; if (stream != mp_const_none) { mp_get_stream_raise(stream, MP_STREAM_OP_READ | MP_STREAM_OP_WRITE); } network_ppp_obj_t *self = mp_obj_malloc_with_finaliser(network_ppp_obj_t, type); self->state = STATE_INACTIVE; self->stream = stream; self->pcb = NULL; return MP_OBJ_FROM_PTR(self); } static mp_obj_t network_ppp___del__(mp_obj_t self_in) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->state >= STATE_ACTIVE) { if (self->state >= STATE_ERROR) { // Still connected over the stream. // Force the connection to close, with nocarrier=1. self->state = STATE_INACTIVE; pppapi_close(self->pcb, 1); } network_ppp_stream_uart_irq_disable(self); // Free PPP PCB and reset state. self->state = STATE_INACTIVE; pppapi_free(self->pcb); self->pcb = NULL; } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp___del___obj, network_ppp___del__); static mp_obj_t network_ppp_poll(size_t n_args, const mp_obj_t *args) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (self->state <= STATE_ERROR) { return MP_OBJ_NEW_SMALL_INT(-MP_EPERM); } mp_int_t total_len = 0; mp_obj_t stream = self->stream; while (stream != mp_const_none) { uint8_t buf[256]; int err; mp_uint_t len = mp_stream_rw(stream, buf, sizeof(buf), &err, 0); if (len == 0) { break; } #if PPP_TRACE_IN_OUT mp_printf(&mp_plat_print, "ppp_in(n=%u,data=", len); for (size_t i = 0; i < len; ++i) { mp_printf(&mp_plat_print, "%02x:", buf[i]); } mp_printf(&mp_plat_print, ")\n"); #endif pppos_input(self->pcb, (u8_t *)buf, len); total_len += len; } return MP_OBJ_NEW_SMALL_INT(total_len); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_ppp_poll_obj, 1, 2, network_ppp_poll); static void network_ppp_stream_uart_irq_enable(network_ppp_obj_t *self) { if (self->stream == mp_const_none) { return; } // Enable UART IRQ to call PPP.poll() when incoming data is ready. mp_obj_t dest[4]; mp_load_method(self->stream, MP_QSTR_irq, dest); dest[2] = mp_obj_new_bound_meth(MP_OBJ_FROM_PTR(&network_ppp_poll_obj), MP_OBJ_FROM_PTR(self)); dest[3] = mp_load_attr(self->stream, MP_QSTR_IRQ_RXIDLE); mp_call_method_n_kw(2, 0, dest); } static mp_obj_t network_ppp_config(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) { if (n_args != 1 && kwargs->used != 0) { mp_raise_TypeError(MP_ERROR_TEXT("either pos or kw args are allowed")); } network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (kwargs->used != 0) { for (size_t i = 0; i < kwargs->alloc; i++) { if (mp_map_slot_is_filled(kwargs, i)) { switch (mp_obj_str_get_qstr(kwargs->table[i].key)) { case MP_QSTR_stream: { if (kwargs->table[i].value != mp_const_none) { mp_get_stream_raise(kwargs->table[i].value, MP_STREAM_OP_READ | MP_STREAM_OP_WRITE); } if (self->state >= STATE_ACTIVE) { network_ppp_stream_uart_irq_disable(self); } self->stream = kwargs->table[i].value; if (self->state >= STATE_ACTIVE) { network_ppp_stream_uart_irq_enable(self); } break; } default: break; } } } return mp_const_none; } if (n_args != 2) { mp_raise_TypeError(MP_ERROR_TEXT("can query only one param")); } mp_obj_t val = mp_const_none; switch (mp_obj_str_get_qstr(args[1])) { case MP_QSTR_stream: { val = self->stream; break; } case MP_QSTR_ifname: { if (self->pcb != NULL) { struct netif *pppif = ppp_netif(self->pcb); char ifname[NETIF_NAMESIZE + 1] = {0}; netif_index_to_name(netif_get_index(pppif), ifname); if (ifname[0] != 0) { val = mp_obj_new_str_from_cstr((char *)ifname); } } break; } default: mp_raise_ValueError(MP_ERROR_TEXT("unknown config param")); } return val; } static MP_DEFINE_CONST_FUN_OBJ_KW(network_ppp_config_obj, 1, network_ppp_config); static mp_obj_t network_ppp_status(mp_obj_t self_in) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->state == STATE_ERROR) { return MP_OBJ_NEW_SMALL_INT(-self->error_code); } else { return MP_OBJ_NEW_SMALL_INT(self->state); } } static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp_status_obj, network_ppp_status); #if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 4, 0) static u32_t network_ppp_output_callback(ppp_pcb *pcb, const void *data, u32_t len, void *ctx) #else static u32_t network_ppp_output_callback(ppp_pcb *pcb, u8_t *data, u32_t len, void *ctx) #endif { network_ppp_obj_t *self = ctx; #if PPP_TRACE_IN_OUT mp_printf(&mp_plat_print, "ppp_out(n=%u,data=", len); for (size_t i = 0; i < len; ++i) { mp_printf(&mp_plat_print, "%02x:", ((const uint8_t *)data)[i]); } mp_printf(&mp_plat_print, ")\n"); #endif mp_obj_t stream = self->stream; if (stream == mp_const_none) { return 0; } int err; // The return value from this output callback is the number of bytes written out. // If it's less than the requested number of bytes then lwIP will propagate out an error. return mp_stream_rw(stream, (void *)data, len, &err, MP_STREAM_RW_WRITE); } static mp_obj_t network_ppp_connect(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { enum { ARG_security, ARG_user, ARG_key, ARG_authmode, ARG_username, ARG_password }; static const mp_arg_t allowed_args[] = { { MP_QSTR_security, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_user, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_key, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, // Deprecated arguments for backwards compatibility { MP_QSTR_authmode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = PPPAUTHTYPE_NONE} }, { MP_QSTR_username, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_password, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, }; mp_arg_val_t parsed_args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, parsed_args); // Use deprecated arguments as defaults if (parsed_args[ARG_security].u_int == -1) { parsed_args[ARG_security].u_int = parsed_args[ARG_authmode].u_int; } if (parsed_args[ARG_user].u_obj == mp_const_none) { parsed_args[ARG_user].u_obj = parsed_args[ARG_username].u_obj; } if (parsed_args[ARG_key].u_obj == mp_const_none) { parsed_args[ARG_key].u_obj = parsed_args[ARG_password].u_obj; } network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (self->state == STATE_INACTIVE) { self->pcb = pppapi_pppos_create(&self->netif, network_ppp_output_callback, network_ppp_status_cb, self); if (self->pcb == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("pppos_create failed")); } self->state = STATE_ACTIVE; network_ppp_stream_uart_irq_enable(self); } if (self->state == STATE_CONNECTING || self->state == STATE_CONNECTED) { mp_raise_OSError(MP_EALREADY); } switch (parsed_args[ARG_security].u_int) { case PPPAUTHTYPE_NONE: case PPPAUTHTYPE_PAP: case PPPAUTHTYPE_CHAP: break; default: mp_raise_ValueError(MP_ERROR_TEXT("invalid auth")); } if (parsed_args[ARG_security].u_int != PPPAUTHTYPE_NONE) { const char *user_str = mp_obj_str_get_str(parsed_args[ARG_user].u_obj); const char *key_str = mp_obj_str_get_str(parsed_args[ARG_key].u_obj); pppapi_set_auth(self->pcb, parsed_args[ARG_security].u_int, user_str, key_str); } if (pppapi_set_default(self->pcb) != ERR_OK) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("ppp_set_default failed")); } ppp_set_usepeerdns(self->pcb, true); if (pppapi_connect(self->pcb, 0) != ERR_OK) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("ppp_connect failed")); } self->state = STATE_CONNECTING; // Do a poll in case there is data waiting on the input stream. network_ppp_poll(1, args); return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_KW(network_ppp_connect_obj, 1, network_ppp_connect); static mp_obj_t network_ppp_disconnect(mp_obj_t self_in) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->state == STATE_CONNECTING || self->state == STATE_CONNECTED) { // Initiate close and wait for PPPERR_USER callback. pppapi_close(self->pcb, 0); } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp_disconnect_obj, network_ppp_disconnect); static mp_obj_t network_ppp_isconnected(mp_obj_t self_in) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(self_in); return mp_obj_new_bool(self->state == STATE_CONNECTED); } static MP_DEFINE_CONST_FUN_OBJ_1(network_ppp_isconnected_obj, network_ppp_isconnected); static mp_obj_t network_ppp_ifconfig(size_t n_args, const mp_obj_t *args) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args == 1) { // get const ip_addr_t *dns; if (self->pcb != NULL) { dns = dns_getserver(0); struct netif *pppif = ppp_netif(self->pcb); mp_obj_t tuple[4] = { netutils_format_ipv4_addr((uint8_t *)&pppif->ip_addr, NETUTILS_BIG), netutils_format_ipv4_addr((uint8_t *)&pppif->gw, NETUTILS_BIG), netutils_format_ipv4_addr((uint8_t *)&pppif->netmask, NETUTILS_BIG), netutils_format_ipv4_addr((uint8_t *)dns, NETUTILS_BIG), }; return mp_obj_new_tuple(4, tuple); } else { mp_obj_t tuple[4] = { mp_const_none, mp_const_none, mp_const_none, mp_const_none }; return mp_obj_new_tuple(4, tuple); } } else { ip_addr_t dns; mp_obj_t *items; mp_obj_get_array_fixed_n(args[1], 4, &items); #if CONFIG_LWIP_IPV6 netutils_parse_ipv4_addr(items[3], (uint8_t *)&dns.u_addr.ip4, NETUTILS_BIG); #else netutils_parse_ipv4_addr(items[3], (uint8_t *)&dns, NETUTILS_BIG); #endif // CONFIG_LWIP_IPV6 dns_setserver(0, &dns); return mp_const_none; } } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_ppp_ifconfig_obj, 1, 2, network_ppp_ifconfig); static mp_obj_t network_ppp_ipconfig(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (kwargs->used == 0) { if (self->pcb == NULL) { mp_raise_ValueError(MP_ERROR_TEXT("PPP not active")); } struct netif *netif = ppp_netif(self->pcb); // Get config value if (n_args != 2) { mp_raise_TypeError(MP_ERROR_TEXT("must query one param")); } switch (mp_obj_str_get_qstr(args[1])) { case MP_QSTR_addr4: { mp_obj_t tuple[2] = { netutils_format_ipv4_addr((uint8_t *)&netif->ip_addr, NETUTILS_BIG), netutils_format_ipv4_addr((uint8_t *)&netif->netmask, NETUTILS_BIG), }; return mp_obj_new_tuple(2, tuple); } case MP_QSTR_gw4: { return netutils_format_ipv4_addr((uint8_t *)&netif->gw, NETUTILS_BIG); } default: { mp_raise_ValueError(MP_ERROR_TEXT("unexpected key")); break; } } return mp_const_none; } else { mp_raise_TypeError(MP_ERROR_TEXT("setting properties not supported")); } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_KW(network_ppp_ipconfig_obj, 1, network_ppp_ipconfig); static mp_obj_t network_ppp_active(size_t n_args, const mp_obj_t *args) { network_ppp_obj_t *self = MP_OBJ_TO_PTR(args[0]); if (n_args > 1) { if (mp_obj_is_true(args[1])) { if (self->state >= STATE_ACTIVE) { return mp_const_true; } self->pcb = pppapi_pppos_create(&self->netif, network_ppp_output_callback, network_ppp_status_cb, self); if (self->pcb == NULL) { mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("pppos_create failed")); } self->state = STATE_ACTIVE; network_ppp_stream_uart_irq_enable(self); } else { if (self->state < STATE_ACTIVE) { return mp_const_false; } network_ppp___del__(MP_OBJ_FROM_PTR(self)); } } return mp_obj_new_bool(self->state >= STATE_ACTIVE); } static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(network_ppp_active_obj, 1, 2, network_ppp_active); static const mp_rom_map_elem_t network_ppp_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&network_ppp___del___obj) }, { MP_ROM_QSTR(MP_QSTR_config), MP_ROM_PTR(&network_ppp_config_obj) }, { MP_ROM_QSTR(MP_QSTR_status), MP_ROM_PTR(&network_ppp_status_obj) }, { MP_ROM_QSTR(MP_QSTR_connect), MP_ROM_PTR(&network_ppp_connect_obj) }, { MP_ROM_QSTR(MP_QSTR_disconnect), MP_ROM_PTR(&network_ppp_disconnect_obj) }, { MP_ROM_QSTR(MP_QSTR_isconnected), MP_ROM_PTR(&network_ppp_isconnected_obj) }, { MP_ROM_QSTR(MP_QSTR_ifconfig), MP_ROM_PTR(&network_ppp_ifconfig_obj) }, { MP_ROM_QSTR(MP_QSTR_ipconfig), MP_ROM_PTR(&network_ppp_ipconfig_obj) }, { MP_ROM_QSTR(MP_QSTR_poll), MP_ROM_PTR(&network_ppp_poll_obj) }, { MP_ROM_QSTR(MP_QSTR_SEC_NONE), MP_ROM_INT(PPPAUTHTYPE_NONE) }, { MP_ROM_QSTR(MP_QSTR_SEC_PAP), MP_ROM_INT(PPPAUTHTYPE_PAP) }, { MP_ROM_QSTR(MP_QSTR_SEC_CHAP), MP_ROM_INT(PPPAUTHTYPE_CHAP) }, // Deprecated interface for backwards compatibility { MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&network_ppp_active_obj) }, { MP_ROM_QSTR(MP_QSTR_AUTH_NONE), MP_ROM_INT(PPPAUTHTYPE_NONE) }, { MP_ROM_QSTR(MP_QSTR_AUTH_PAP), MP_ROM_INT(PPPAUTHTYPE_PAP) }, { MP_ROM_QSTR(MP_QSTR_AUTH_CHAP), MP_ROM_INT(PPPAUTHTYPE_CHAP) }, }; static MP_DEFINE_CONST_DICT(network_ppp_locals_dict, network_ppp_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( esp_network_ppp_lwip_type, MP_QSTR_PPP, MP_TYPE_FLAG_NONE, make_new, network_ppp_make_new, locals_dict, &network_ppp_locals_dict ); #endif