/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020-2023 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/modmachine.c via MICROPY_PY_MACHINE_INCLUDEFILE. #include "py/mphal.h" #include "mp_usbd.h" #include "modmachine.h" #include "uart.h" #include "rp2_psram.h" #include "rp2_flash.h" #include "clocks_extra.h" #include "hardware/pll.h" #include "hardware/structs/rosc.h" #include "hardware/structs/scb.h" #include "hardware/structs/syscfg.h" #include "hardware/watchdog.h" #include "hardware/xosc.h" #include "pico/bootrom.h" #include "pico/stdlib.h" #include "pico/unique_id.h" #include "pico/runtime_init.h" #if MICROPY_PY_NETWORK_CYW43 #include "lib/cyw43-driver/src/cyw43.h" #endif #define RP2_RESET_PWRON (1) #define RP2_RESET_WDT (3) #define MICROPY_PY_MACHINE_EXTRA_GLOBALS \ { MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&machine_pin_type) }, \ { MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&machine_rtc_type) }, \ { MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&machine_timer_type) }, \ \ { MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(RP2_RESET_PWRON) }, \ { MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(RP2_RESET_WDT) }, \ static mp_obj_t mp_machine_unique_id(void) { pico_unique_board_id_t id; pico_get_unique_board_id(&id); return mp_obj_new_bytes(id.id, sizeof(id.id)); } MP_NORETURN static void mp_machine_reset(void) { watchdog_reboot(0, SRAM_END, 0); for (;;) { __wfi(); } } static mp_int_t mp_machine_reset_cause(void) { int reset_cause; if (watchdog_caused_reboot()) { reset_cause = RP2_RESET_WDT; } else { reset_cause = RP2_RESET_PWRON; } return reset_cause; } MP_NORETURN void mp_machine_bootloader(size_t n_args, const mp_obj_t *args) { MICROPY_BOARD_ENTER_BOOTLOADER(n_args, args); rosc_hw->ctrl = ROSC_CTRL_ENABLE_VALUE_ENABLE << ROSC_CTRL_ENABLE_LSB; reset_usb_boot(0, 0); for (;;) { } } static mp_obj_t mp_machine_get_freq(void) { return MP_OBJ_NEW_SMALL_INT(mp_hal_get_cpu_freq()); } static void mp_machine_set_freq(size_t n_args, const mp_obj_t *args) { mp_int_t freq = mp_obj_get_int(args[0]); // If necessary, increase the flash divider before increasing the clock speed const int old_freq = clock_get_hz(clk_sys); rp2_flash_set_timing_for_freq(MAX(freq, old_freq)); if (!set_sys_clock_khz(freq / 1000, false)) { mp_raise_ValueError(MP_ERROR_TEXT("cannot change frequency")); } if (n_args > 1) { mp_int_t freq_peri = mp_obj_get_int(args[1]); if (freq_peri != (USB_CLK_KHZ * KHZ)) { if (freq_peri == freq) { clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLKSRC_PLL_SYS, freq, freq); } else { mp_raise_ValueError(MP_ERROR_TEXT("peripheral freq must be 48_000_000 or the same as the MCU freq")); } } } // If clock speed was reduced, maybe we can reduce the flash divider if (freq < old_freq) { rp2_flash_set_timing_for_freq(freq); } #if MICROPY_HW_ENABLE_UART_REPL setup_default_uart(); mp_uart_init(); #endif #if MICROPY_HW_ENABLE_PSRAM psram_init(MICROPY_HW_PSRAM_CS_PIN); #endif } static void mp_machine_idle(void) { MICROPY_INTERNAL_WFE(1); } static void alarm_sleep_callback(uint alarm_id) { } // Set this to 1 to enable some debug of the interrupt that woke the device #define DEBUG_LIGHTSLEEP 0 static void mp_machine_lightsleep(size_t n_args, const mp_obj_t *args) { mp_int_t delay_ms = 0; bool use_timer_alarm = false; if (n_args == 1) { delay_ms = mp_obj_get_int(args[0]); if (delay_ms <= 1) { // Sleep is too small, just use standard delay. mp_hal_delay_ms(delay_ms); return; } use_timer_alarm = delay_ms < (1ULL << 32) / 1000; if (use_timer_alarm) { // Use timer alarm to wake. } else { // TODO: Use RTC alarm to wake. mp_raise_ValueError(MP_ERROR_TEXT("sleep too long")); } } const uint32_t xosc_hz = XOSC_MHZ * 1000000; uint32_t my_interrupts = MICROPY_BEGIN_ATOMIC_SECTION(); #if MICROPY_PY_NETWORK_CYW43 if (cyw43_poll_is_pending()) { MICROPY_END_ATOMIC_SECTION(my_interrupts); return; } #endif #if MICROPY_PY_THREAD static bool in_lightsleep; if (in_lightsleep) { // The other CPU is also in machine.lightsleep() MICROPY_END_ATOMIC_SECTION(my_interrupts); return; } in_lightsleep = true; #endif #if MICROPY_HW_ENABLE_USBDEV // Only disable the USB clock if a USB host has not configured the device // or if going to DORMANT mode. bool disable_usb = !(tud_mounted() && n_args > 0); #else bool disable_usb = true; #endif if (disable_usb) { clock_stop(clk_usb); } clock_stop(clk_adc); #if PICO_RP2350 clock_stop(clk_hstx); #endif // CLK_REF = XOSC clock_configure(clk_ref, CLOCKS_CLK_REF_CTRL_SRC_VALUE_XOSC_CLKSRC, 0, xosc_hz, xosc_hz); // CLK_SYS = CLK_REF clock_configure(clk_sys, CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLK_REF, 0, xosc_hz, xosc_hz); // CLK_RTC = XOSC / 256 #if PICO_RP2040 clock_configure(clk_rtc, 0, CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_XOSC_CLKSRC, xosc_hz, xosc_hz / 256); #endif // CLK_PERI = CLK_SYS clock_configure(clk_peri, 0, CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS, xosc_hz, xosc_hz); // Disable PLLs. pll_deinit(pll_sys); if (disable_usb) { pll_deinit(pll_usb); } // Disable ROSC. rosc_hw->ctrl = ROSC_CTRL_ENABLE_VALUE_DISABLE << ROSC_CTRL_ENABLE_LSB; #if DEBUG_LIGHTSLEEP #if PICO_RP2040 uint32_t pending_intr = 0; #else uint32_t pending_intr[2] = { 0 }; #endif #endif bool alarm_armed = false; if (n_args == 0) { #if MICROPY_PY_NETWORK_CYW43 gpio_set_dormant_irq_enabled(CYW43_PIN_WL_HOST_WAKE, GPIO_IRQ_LEVEL_HIGH, true); #endif xosc_dormant(); } else { uint32_t save_sleep_en0 = clocks_hw->sleep_en0; uint32_t save_sleep_en1 = clocks_hw->sleep_en1; if (use_timer_alarm) { // Use timer alarm to wake. clocks_hw->sleep_en0 = 0x0; #if PICO_RP2040 clocks_hw->sleep_en1 = CLOCKS_SLEEP_EN1_CLK_SYS_TIMER_BITS; #elif PICO_RP2350 clocks_hw->sleep_en1 = CLOCKS_SLEEP_EN1_CLK_REF_TICKS_BITS | CLOCKS_SLEEP_EN1_CLK_SYS_TIMER0_BITS; #else #error Unknown processor #endif hardware_alarm_claim(MICROPY_HW_LIGHTSLEEP_ALARM_NUM); hardware_alarm_set_callback(MICROPY_HW_LIGHTSLEEP_ALARM_NUM, alarm_sleep_callback); if (hardware_alarm_set_target(MICROPY_HW_LIGHTSLEEP_ALARM_NUM, make_timeout_time_ms(delay_ms)) == PICO_OK) { alarm_armed = true; } } else { // TODO: Use RTC alarm to wake. clocks_hw->sleep_en0 = 0x0; clocks_hw->sleep_en1 = 0x0; } if (!disable_usb) { clocks_hw->sleep_en0 |= CLOCKS_SLEEP_EN0_CLK_SYS_PLL_USB_BITS; #if PICO_RP2040 clocks_hw->sleep_en1 |= CLOCKS_SLEEP_EN1_CLK_USB_USBCTRL_BITS; #elif PICO_RP2350 clocks_hw->sleep_en1 |= CLOCKS_SLEEP_EN1_CLK_USB_BITS; #else #error Unknown processor #endif } #if PICO_ARM // Configure SLEEPDEEP bits on Cortex-M CPUs. #if PICO_RP2040 scb_hw->scr |= M0PLUS_SCR_SLEEPDEEP_BITS; #elif PICO_RP2350 scb_hw->scr |= M33_SCR_SLEEPDEEP_BITS; #else #error Unknown processor #endif #endif // Go into low-power mode. if (alarm_armed) { __wfi(); #if DEBUG_LIGHTSLEEP #if PICO_RP2040 pending_intr = nvic_hw->ispr; #else pending_intr[0] = nvic_hw->ispr[0]; pending_intr[1] = nvic_hw->ispr[1]; #endif #endif } clocks_hw->sleep_en0 = save_sleep_en0; clocks_hw->sleep_en1 = save_sleep_en1; } // Enable ROSC. rosc_hw->ctrl = ROSC_CTRL_ENABLE_VALUE_ENABLE << ROSC_CTRL_ENABLE_LSB; // Bring back all clocks. runtime_init_clocks_optional_usb(disable_usb); MICROPY_END_ATOMIC_SECTION(my_interrupts); // Re-sync mp_hal_time_ns() counter with aon timer. mp_hal_time_ns_set_from_rtc(); // Note: This must be done after MICROPY_END_ATOMIC_SECTION if (use_timer_alarm) { if (alarm_armed) { hardware_alarm_cancel(MICROPY_HW_LIGHTSLEEP_ALARM_NUM); } hardware_alarm_set_callback(MICROPY_HW_LIGHTSLEEP_ALARM_NUM, NULL); hardware_alarm_unclaim(MICROPY_HW_LIGHTSLEEP_ALARM_NUM); #if DEBUG_LIGHTSLEEP // Check irq.h for the list of IRQ's // for rp2040 00000042: TIMER_IRQ_1 woke the device as expected // 00000020: USBCTRL_IRQ woke the device (probably early) // For rp2350 00000000:00000002: TIMER0_IRQ_1 woke the device as expected // 00000000:00004000: USBCTRL_IRQ woke the device (probably early) #if PICO_RP2040 mp_printf(MP_PYTHON_PRINTER, "lightsleep: pending_intr=%08lx\n", pending_intr); #else mp_printf(MP_PYTHON_PRINTER, "lightsleep: pending_intr=%08lx:%08lx\n", pending_intr[1], pending_intr[0]); #endif #endif } #if MICROPY_PY_THREAD // Clearing the flag here is atomic, and we know we're the ones who set it // (higher up, inside the critical section) in_lightsleep = false; #endif } MP_NORETURN static void mp_machine_deepsleep(size_t n_args, const mp_obj_t *args) { mp_machine_lightsleep(n_args, args); mp_machine_reset(); }