import numpy as np import time import keras.models as km from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Flatten, Dropout, Activation from keras.utils import np_utils import matplotlib.pyplot as plt predictions = ['T-shirt/top', 'trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] (X_train, y_train), (X_test, y_test) = mnist.load_data() num_pixels = X_train.shape[1] * X_train.shape[2] num_classes = 10 t1 = time.time() X_train = X_train.reshape(60000, 784) / 255 X_test = X_test.reshape(10000, 784) / 255 X_train = X_train.astype('float32') X_test = X_test.astype('float32') # let's print the shape before we reshape and normalize print("X_train shape", X_train.shape) print("y_train shape", y_train.shape) print("X_test shape", X_test.shape) print("y_test shape", y_test.shape) Y_train = np_utils.to_categorical(y_train, num_classes) Y_test = np_utils.to_categorical(y_test, num_classes) t2 = time.time() print("Preprocessing took %.2f sec." % (t2 - t1)) print('Loading model and weights.') json_file = open('mnist.json', 'r') loaded_nnet = json_file.read() json_file.close() model = km.model_from_json(loaded_nnet) model.load_weights('mnist.h5') print("Training network ...") model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print("Making predictions...") t3 = time.time() for i in range(9): img = np.array(X_test[i][np.newaxis,:]) preds = model.predict_classes(img) print("Image[", i, "] - Me thinks me saw a : ", predictions[int(preds[0])] ) t4 = time.time() print("Predictions took %.2f sec." % (t4 - t3)) print('Total running time %.2f sec' % (t4 - t1))