mirror of
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-CUDA-C-and-Python-3.x-Second-Edition.git
synced 2025-07-21 21:01:06 +02:00
Create conway_gpu_syncthreads_shared.py
This commit is contained in:
103
Chapter04/conway_gpu_syncthreads_shared.py
Normal file
103
Chapter04/conway_gpu_syncthreads_shared.py
Normal file
@@ -0,0 +1,103 @@
|
|||||||
|
# Iterative Conway's game of life in Python / CUDA C
|
||||||
|
# this version is meant to illustrate the use of shared kernel memory in CUDA.
|
||||||
|
# written by Brian Tuomanen for "Hands on GPU Programming with Python and CUDA"
|
||||||
|
|
||||||
|
import pycuda.autoinit
|
||||||
|
import pycuda.driver as drv
|
||||||
|
from pycuda import gpuarray
|
||||||
|
from pycuda.compiler import SourceModule
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from time import time
|
||||||
|
|
||||||
|
shared_ker = SourceModule("""
|
||||||
|
#define _iters 1000000
|
||||||
|
|
||||||
|
#define _X ( threadIdx.x + blockIdx.x * blockDim.x )
|
||||||
|
#define _Y ( threadIdx.y + blockIdx.y * blockDim.y )
|
||||||
|
|
||||||
|
#define _WIDTH ( blockDim.x * gridDim.x )
|
||||||
|
#define _HEIGHT ( blockDim.y * gridDim.y )
|
||||||
|
|
||||||
|
#define _XM(x) ( (x + _WIDTH) % _WIDTH )
|
||||||
|
#define _YM(y) ( (y + _HEIGHT) % _HEIGHT )
|
||||||
|
|
||||||
|
#define _INDEX(x,y) ( _XM(x) + _YM(y) * _WIDTH )
|
||||||
|
|
||||||
|
// return the number of living neighbors for a given cell
|
||||||
|
__device__ int nbrs(int x, int y, int * in)
|
||||||
|
{
|
||||||
|
return ( in[ _INDEX(x -1, y+1) ] + in[ _INDEX(x-1, y) ] + in[ _INDEX(x-1, y-1) ] \
|
||||||
|
+ in[ _INDEX(x, y+1)] + in[_INDEX(x, y - 1)] \
|
||||||
|
+ in[ _INDEX(x+1, y+1) ] + in[ _INDEX(x+1, y) ] + in[ _INDEX(x+1, y-1) ] );
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__ void conway_ker_shared(int * p_lattice, int iters)
|
||||||
|
{
|
||||||
|
// x, y are the appropriate values for the cell covered by this thread
|
||||||
|
int x = _X, y = _Y;
|
||||||
|
__shared__ int lattice[32*32];
|
||||||
|
|
||||||
|
|
||||||
|
lattice[_INDEX(x,y)] = p_lattice[_INDEX(x,y)];
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int i = 0; i < iters; i++)
|
||||||
|
{
|
||||||
|
|
||||||
|
// count the number of neighbors around the current cell
|
||||||
|
int n = nbrs(x, y, lattice);
|
||||||
|
|
||||||
|
int cell_value;
|
||||||
|
|
||||||
|
|
||||||
|
// if the current cell is alive, then determine if it lives or dies for the next generation.
|
||||||
|
if ( lattice[_INDEX(x,y)] == 1)
|
||||||
|
switch(n)
|
||||||
|
{
|
||||||
|
// if the cell is alive: it remains alive only if it has 2 or 3 neighbors.
|
||||||
|
case 2:
|
||||||
|
case 3: cell_value = 1;
|
||||||
|
break;
|
||||||
|
default: cell_value = 0;
|
||||||
|
}
|
||||||
|
else if( lattice[_INDEX(x,y)] == 0 )
|
||||||
|
switch(n)
|
||||||
|
{
|
||||||
|
// a dead cell comes to life only if it has 3 neighbors that are alive.
|
||||||
|
case 3: cell_value = 1;
|
||||||
|
break;
|
||||||
|
default: cell_value = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
lattice[_INDEX(x,y)] = cell_value;
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
p_lattice[_INDEX(x,y)] = lattice[_INDEX(x,y)];
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
}
|
||||||
|
""")
|
||||||
|
|
||||||
|
|
||||||
|
conway_ker_shared = shared_ker.get_function("conway_ker_shared")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# set lattice size
|
||||||
|
N = 32
|
||||||
|
|
||||||
|
lattice = np.int32( np.random.choice([1,0], N*N, p=[0.25, 0.75]).reshape(N, N) )
|
||||||
|
lattice_gpu = gpuarray.to_gpu(lattice)
|
||||||
|
|
||||||
|
conway_ker_shared(lattice_gpu, np.int32(1000000), grid=(1,1,1), block=(32,32,1))
|
||||||
|
|
||||||
|
fig = plt.figure(1)
|
||||||
|
plt.imshow(lattice_gpu.get())
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
Reference in New Issue
Block a user