mirror of
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-CUDA-C-and-Python-3.x-Second-Edition.git
synced 2025-08-15 07:00:06 +02:00
Create naive_prefix.py
This commit is contained in:
52
Chapter04/naive_prefix.py
Normal file
52
Chapter04/naive_prefix.py
Normal file
@@ -0,0 +1,52 @@
|
||||
import pycuda.autoinit
|
||||
import pycuda.driver as drv
|
||||
import numpy as np
|
||||
from pycuda import gpuarray
|
||||
from pycuda.compiler import SourceModule
|
||||
from time import time
|
||||
# this is a naive parallel prefix-sum kernel that uses shared memory
|
||||
naive_ker = SourceModule("""
|
||||
__global__ void naive_prefix(double *vec, double *out)
|
||||
{
|
||||
__shared__ double sum_buf[1024];
|
||||
int tid = threadIdx.x;
|
||||
sum_buf[tid] = vec[tid];
|
||||
|
||||
// begin parallel prefix sum algorithm
|
||||
|
||||
int iter = 1;
|
||||
for (int i=0; i < 10; i++)
|
||||
{
|
||||
__syncthreads();
|
||||
if (tid >= iter )
|
||||
{
|
||||
sum_buf[tid] = sum_buf[tid] + sum_buf[tid - iter];
|
||||
}
|
||||
|
||||
iter *= 2;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
out[tid] = sum_buf[tid];
|
||||
__syncthreads();
|
||||
|
||||
}
|
||||
""")
|
||||
naive_gpu = naive_ker.get_function("naive_prefix")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
|
||||
testvec = np.random.randn(1024).astype(np.float64)
|
||||
testvec_gpu = gpuarray.to_gpu(testvec)
|
||||
|
||||
outvec_gpu = gpuarray.empty_like(testvec_gpu)
|
||||
|
||||
naive_gpu( testvec_gpu , outvec_gpu, block=(1024,1,1), grid=(1,1,1))
|
||||
|
||||
total_sum = sum( testvec)
|
||||
total_sum_gpu = outvec_gpu[-1].get()
|
||||
|
||||
print("Does our kernel work correctly? : {}".format(np.allclose(total_sum_gpu , total_sum) ))
|
Reference in New Issue
Block a user