mirror of
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-CUDA-C-and-Python-3.x-Second-Edition.git
synced 2025-07-21 21:01:06 +02:00
Create conway_gpu.py
This commit is contained in:
92
Chapter04/conway_gpu.py
Normal file
92
Chapter04/conway_gpu.py
Normal file
@@ -0,0 +1,92 @@
|
||||
# Conway's game of life in Python / CUDA C
|
||||
# written by Brian Tuomanen for "Hands on GPU Programming with Python and CUDA"
|
||||
|
||||
import pycuda.autoinit
|
||||
import pycuda.driver as drv
|
||||
from pycuda import gpuarray
|
||||
from pycuda.compiler import SourceModule
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
|
||||
ker = SourceModule("""
|
||||
#define _X ( threadIdx.x + blockIdx.x * blockDim.x )
|
||||
#define _Y ( threadIdx.y + blockIdx.y * blockDim.y )
|
||||
|
||||
#define _WIDTH ( blockDim.x * gridDim.x )
|
||||
#define _HEIGHT ( blockDim.y * gridDim.y )
|
||||
|
||||
#define _XM(x) ( (x + _WIDTH) % _WIDTH )
|
||||
#define _YM(y) ( (y + _HEIGHT) % _HEIGHT )
|
||||
|
||||
#define _INDEX(x,y) ( _XM(x) + _YM(y) * _WIDTH )
|
||||
|
||||
// return the number of living neighbors for a given cell
|
||||
__device__ int nbrs(int x, int y, int * in)
|
||||
{
|
||||
return ( in[ _INDEX(x -1, y+1) ] + in[ _INDEX(x-1, y) ] + in[ _INDEX(x-1, y-1) ] \
|
||||
+ in[ _INDEX(x, y+1)] + in[_INDEX(x, y - 1)] \
|
||||
+ in[ _INDEX(x+1, y+1) ] + in[ _INDEX(x+1, y) ] + in[ _INDEX(x+1, y-1) ] );
|
||||
}
|
||||
|
||||
__global__ void conway_ker(int * lattice_out, int * lattice )
|
||||
{
|
||||
// x, y are the appropriate values for the cell covered by this thread
|
||||
int x = _X, y = _Y;
|
||||
|
||||
// count the number of neighbors around the current cell
|
||||
int n = nbrs(x, y, lattice);
|
||||
|
||||
|
||||
// if the current cell is alive, then determine if it lives or dies for the next generation.
|
||||
if ( lattice[_INDEX(x,y)] == 1)
|
||||
switch(n)
|
||||
{
|
||||
// if the cell is alive: it remains alive only if it has 2 or 3 neighbors.
|
||||
case 2:
|
||||
case 3: lattice_out[_INDEX(x,y)] = 1;
|
||||
break;
|
||||
default: lattice_out[_INDEX(x,y)] = 0;
|
||||
}
|
||||
else if( lattice[_INDEX(x,y)] == 0 )
|
||||
switch(n)
|
||||
{
|
||||
// a dead cell comes to life only if it has 3 neighbors that are alive.
|
||||
case 3: lattice_out[_INDEX(x,y)] = 1;
|
||||
break;
|
||||
default: lattice_out[_INDEX(x,y)] = 0;
|
||||
}
|
||||
|
||||
}
|
||||
""")
|
||||
|
||||
|
||||
conway_ker = ker.get_function("conway_ker")
|
||||
|
||||
|
||||
def update_gpu(frameNum, img, newLattice_gpu, lattice_gpu, N):
|
||||
|
||||
conway_ker( newLattice_gpu, lattice_gpu, grid=(N//32,N//32,1), block=(32,32,1) )
|
||||
|
||||
img.set_data(newLattice_gpu.get() )
|
||||
|
||||
|
||||
lattice_gpu[:] = newLattice_gpu[:]
|
||||
|
||||
return img
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# set lattice size
|
||||
N = 512
|
||||
|
||||
lattice = np.int32( np.random.choice([1,0], N*N, p=[0.25, 0.75]).reshape(N, N) )
|
||||
lattice_gpu = gpuarray.to_gpu(lattice)
|
||||
|
||||
newLattice_gpu = gpuarray.empty_like(lattice_gpu)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
img = ax.imshow(lattice_gpu.get(), interpolation='nearest')
|
||||
ani = animation.FuncAnimation(fig, update_gpu, fargs=(img, newLattice_gpu, lattice_gpu, N, ) , interval=0, frames=1000, save_count=1000)
|
||||
|
||||
plt.show()
|
Reference in New Issue
Block a user