Files
Hands-On-GPU-Programming-wi…/Chapter07/conv_2d.py

97 lines
2.5 KiB
Python
Executable File

from __future__ import division
import pycuda.autoinit
from pycuda import gpuarray
import numpy as np
from skcuda import fft
from skcuda import linalg
from matplotlib import pyplot as plt
def cufft_conv(x , y):
x = x.astype(np.complex64)
y = y.astype(np.complex64)
if (x.shape != y.shape):
return -1
plan = fft.Plan(x.shape, np.complex64, np.complex64)
inverse_plan = fft.Plan(x.shape, np.complex64, np.complex64)
x_gpu = gpuarray.to_gpu(x)
y_gpu = gpuarray.to_gpu(y)
x_fft = gpuarray.empty_like(x_gpu, dtype=np.complex64)
y_fft = gpuarray.empty_like(y_gpu, dtype=np.complex64)
out_gpu = gpuarray.empty_like(x_gpu, dtype=np.complex64)
fft.fft(x_gpu, x_fft, plan)
fft.fft(y_gpu, y_fft, plan)
linalg.multiply(x_fft, y_fft, overwrite=True)
fft.ifft(y_fft, out_gpu, inverse_plan, scale=True)
conv_out = out_gpu.get()
return conv_out
def conv_2d(ker, img):
padded_ker = np.zeros( (img.shape[0] + 2*ker.shape[0], img.shape[1] + 2*ker.shape[1] )).astype(np.float32)
padded_ker[:ker.shape[0], :ker.shape[1]] = ker
padded_ker = np.roll(padded_ker, shift=-ker.shape[0]//2, axis=0)
padded_ker = np.roll(padded_ker, shift=-ker.shape[1]//2, axis=1)
padded_img = np.zeros_like(padded_ker).astype(np.float32)
padded_img[ker.shape[0]:-ker.shape[0], ker.shape[1]:-ker.shape[1]] = img
out_ = cufft_conv(padded_ker, padded_img)
output = out_[ker.shape[0]:-ker.shape[0], ker.shape[1]:-ker.shape[1]]
return output
gaussian_filter = lambda x, y, sigma : (1 / np.sqrt(2*np.pi*(sigma**2)) )*np.exp( -(x**2 + y**2) / (2 * (sigma**2) ))
def gaussian_ker(sigma):
ker_ = np.zeros((2*sigma+1, 2*sigma+1))
for i in range(2*sigma + 1):
for j in range(2*sigma + 1):
ker_[i,j] = gaussian_filter(i - sigma, j - sigma, sigma)
total_ = np.sum(ker_.ravel())
ker_ = ker_ / total_
return ker_
if __name__ == '__main__':
latte = np.float32(plt.imread('latte.jpg')) / 255
latte_blurred = np.zeros_like(latte)
ker = gaussian_ker(30)
for k in range(3):
latte_blurred[:,:,k] = conv_2d(ker, latte[:,:,k])
fig, (ax0, ax1) = plt.subplots(1,2)
fig.suptitle('Gaussian Filtering', fontsize=20)
ax0.set_title('Before')
ax0.axis('off')
ax0.imshow(latte)
ax1.set_title('After')
ax1.axis('off')
ax1.imshow(latte_blurred)
plt.tight_layout()
plt.subplots_adjust(top=.85)
plt.show()