mirror of
https://github.com/PacktPublishing/Hands-On-GPU-Programming-with-CUDA-C-and-Python-3.x-Second-Edition.git
synced 2025-07-21 04:41:05 +02:00
144 lines
3.3 KiB
Plaintext
144 lines
3.3 KiB
Plaintext
#include <cuda_runtime.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#define _EPSILON 0.001
|
|
#define _ABS(x) ( x > 0.0f ? x : -x )
|
|
|
|
__host__ int allclose(float *A, float *B, int len)
|
|
{
|
|
|
|
int returnval = 0;
|
|
|
|
for (int i = 0; i < len; i++)
|
|
{
|
|
if ( _ABS(A[i] - B[i]) > _EPSILON )
|
|
{
|
|
returnval = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return(returnval);
|
|
}
|
|
|
|
|
|
// row-column dot-product for matrix multiplication
|
|
__device__ float rowcol_dot(float *matrix_a, float *matrix_b, int row, int col, int N)
|
|
{
|
|
float val = 0;
|
|
|
|
for (int k=0; k < N; k++)
|
|
{
|
|
val += matrix_a[ row*N + k ] * matrix_b[ col + k*N];
|
|
}
|
|
|
|
return(val);
|
|
}
|
|
|
|
// matrix multiplication kernel that is parallelized over row/column tuples.
|
|
__global__ void matrix_mult_ker(float * matrix_a, float * matrix_b, float * output_matrix, int N)
|
|
{
|
|
|
|
int row = blockIdx.x*blockDim.x + threadIdx.x;
|
|
int col = blockIdx.y*blockDim.y + threadIdx.y;
|
|
|
|
output_matrix[col + row*N] = rowcol_dot(matrix_a, matrix_b, row, col, N);
|
|
}
|
|
|
|
|
|
__host__ int main()
|
|
{
|
|
|
|
// Initialize to use first GPU.
|
|
cudaSetDevice(0);
|
|
|
|
// this indicates the width/height of the matrices
|
|
int N = 4;
|
|
|
|
// this will indicate how many bytes to allocate to store a test or output matrix
|
|
int num_bytes = sizeof(float)*N*N;
|
|
|
|
// input test matrix A
|
|
float h_A[] = { 1.0, 2.0, 3.0, 4.0, \
|
|
1.0, 2.0, 3.0, 4.0, \
|
|
1.0, 2.0, 3.0, 4.0, \
|
|
1.0, 2.0, 3.0, 4.0 };
|
|
|
|
// input test matrix B
|
|
float h_B[] = { 14.0, 13.0, 12.0, 11.0, \
|
|
14.0, 13.0, 12.0, 11.0, \
|
|
14.0, 13.0, 12.0, 11.0, \
|
|
14.0, 13.0, 12.0, 11.0 };
|
|
|
|
// expected output of A times B
|
|
float h_AxB[] = { 140.0, 130.0, 120.0, 110.0, \
|
|
140.0, 130.0, 120.0, 110.0, \
|
|
140.0, 130.0, 120.0, 110.0, \
|
|
140.0, 130.0, 120.0, 110.0 };
|
|
|
|
|
|
// these pointers will be used for the GPU.
|
|
// (notice how we use normal float pointers)
|
|
float * d_A;
|
|
float * d_B;
|
|
float * d_output;
|
|
|
|
// allocate memory for the test matrices on the GPU
|
|
cudaMalloc((float **) &d_A, num_bytes);
|
|
cudaMalloc((float **) &d_B, num_bytes);
|
|
|
|
// copy the test matrices to the GPU
|
|
cudaMemcpy(d_A, h_A, num_bytes, cudaMemcpyHostToDevice);
|
|
cudaMemcpy(d_B, h_B, num_bytes, cudaMemcpyHostToDevice);
|
|
|
|
// allocate memory for output on GPU
|
|
cudaMalloc((float **) &d_output, num_bytes);
|
|
|
|
// this will store the output from the GPU
|
|
float * h_output;
|
|
h_output = (float *) malloc(num_bytes);
|
|
|
|
// setup our block and grid launch parameters with the dim3 class.
|
|
dim3 block(2,2,1);
|
|
dim3 grid(2,2,1);
|
|
|
|
// launch our kernel
|
|
matrix_mult_ker <<< grid, block >>> (d_A, d_B, d_output, N);
|
|
|
|
// synchronize on the host, to ensure our kernel has finished executing.
|
|
cudaDeviceSynchronize();
|
|
|
|
// copy output from device to host.
|
|
cudaMemcpy(h_output, d_output, num_bytes, cudaMemcpyDeviceToHost);
|
|
|
|
// synchronize again.
|
|
cudaDeviceSynchronize();
|
|
|
|
// free arrays on device.
|
|
cudaFree(d_A);
|
|
cudaFree(d_B);
|
|
cudaFree(d_output);
|
|
|
|
// reset the GPU.
|
|
cudaDeviceReset();
|
|
|
|
|
|
// Check to see if we got the expected output.
|
|
// in both cases, remember to de-allocate h_output before returning.
|
|
|
|
if (allclose(h_AxB, h_output, N*N) < 0)
|
|
{
|
|
printf("Error! Output of kernel does not match expected output.\n");
|
|
free(h_output);
|
|
return(-1);
|
|
}
|
|
else
|
|
{
|
|
printf("Success! Output of kernel matches expected output.\n");
|
|
free(h_output);
|
|
return(0);
|
|
}
|
|
|
|
|
|
}
|