Files
micropython/ports/cc3200/mods/pybrtc.c
Angus Gratton decf8e6a8b all: Remove the "STATIC" macro and just use "static" instead.
The STATIC macro was introduced a very long time ago in commit
d5df6cd44a.  The original reason for this was
to have the option to define it to nothing so that all static functions
become global functions and therefore visible to certain debug tools, so
one could do function size comparison and other things.

This STATIC feature is rarely (if ever) used.  And with the use of LTO and
heavy inline optimisation, analysing the size of individual functions when
they are not static is not a good representation of the size of code when
fully optimised.

So the macro does not have much use and it's simpler to just remove it.
Then you know exactly what it's doing.  For example, newcomers don't have
to learn what the STATIC macro is and why it exists.  Reading the code is
also less "loud" with a lowercase static.

One other minor point in favour of removing it, is that it stops bugs with
`STATIC inline`, which should always be `static inline`.

Methodology for this commit was:

1) git ls-files | egrep '\.[ch]$' | \
   xargs sed -Ei "s/(^| )STATIC($| )/\1static\2/"

2) Do some manual cleanup in the diff by searching for the word STATIC in
   comments and changing those back.

3) "git-grep STATIC docs/", manually fixed those cases.

4) "rg -t python STATIC", manually fixed codegen lines that used STATIC.

This work was funded through GitHub Sponsors.

Signed-off-by: Angus Gratton <angus@redyak.com.au>
2024-03-07 14:20:42 +11:00

486 lines
17 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mphal.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mperrno.h"
#include "shared/timeutils/timeutils.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "rom_map.h"
#include "prcm.h"
#include "pybrtc.h"
#include "mpirq.h"
#include "pybsleep.h"
#include "simplelink.h"
#include "modnetwork.h"
#include "modwlan.h"
/// \moduleref pyb
/// \class RTC - real time clock
/******************************************************************************
DECLARE PRIVATE DATA
******************************************************************************/
static const mp_irq_methods_t pyb_rtc_irq_methods;
static pyb_rtc_obj_t pyb_rtc_obj;
/******************************************************************************
FUNCTION-LIKE MACROS
******************************************************************************/
#define RTC_U16MS_CYCLES(msec) ((msec * 1024) / 1000)
#define RTC_CYCLES_U16MS(cycles) ((cycles * 1000) / 1024)
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
static void pyb_rtc_set_time (uint32_t secs, uint16_t msecs);
static uint32_t pyb_rtc_reset (void);
static void pyb_rtc_disable_interupt (void);
static void pyb_rtc_irq_enable (mp_obj_t self_in);
static void pyb_rtc_irq_disable (mp_obj_t self_in);
static int pyb_rtc_irq_flags (mp_obj_t self_in);
static uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds);
static mp_obj_t pyb_rtc_datetime(mp_obj_t self, const mp_obj_t datetime);
static void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds);
static void rtc_msec_add(uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2);
/******************************************************************************
DECLARE PUBLIC FUNCTIONS
******************************************************************************/
__attribute__ ((section (".boot")))
void pyb_rtc_pre_init(void) {
// only if coming out of a power-on reset
if (MAP_PRCMSysResetCauseGet() == PRCM_POWER_ON) {
// Mark the RTC in use first
MAP_PRCMRTCInUseSet();
// reset the time and date
pyb_rtc_reset();
}
}
void pyb_rtc_get_time (uint32_t *secs, uint16_t *msecs) {
uint16_t cycles;
MAP_PRCMRTCGet (secs, &cycles);
*msecs = RTC_CYCLES_U16MS(cycles);
}
uint32_t pyb_rtc_get_seconds (void) {
uint32_t seconds;
uint16_t mseconds;
pyb_rtc_get_time(&seconds, &mseconds);
return seconds;
}
void pyb_rtc_calc_future_time (uint32_t a_mseconds, uint32_t *f_seconds, uint16_t *f_mseconds) {
uint32_t c_seconds;
uint16_t c_mseconds;
// get the current time
pyb_rtc_get_time(&c_seconds, &c_mseconds);
// calculate the future seconds
*f_seconds = c_seconds + (a_mseconds / 1000);
// calculate the "remaining" future mseconds
*f_mseconds = a_mseconds % 1000;
// add the current milliseconds
rtc_msec_add (c_mseconds, f_seconds, f_mseconds);
}
void pyb_rtc_repeat_alarm (pyb_rtc_obj_t *self) {
if (self->repeat) {
uint32_t f_seconds, c_seconds;
uint16_t f_mseconds, c_mseconds;
pyb_rtc_get_time(&c_seconds, &c_mseconds);
// subtract the time elapsed between waking up and setting up the alarm again
int32_t wake_ms = ((c_seconds * 1000) + c_mseconds) - ((self->alarm_time_s * 1000) + self->alarm_time_ms);
int32_t next_alarm = self->alarm_ms - wake_ms;
next_alarm = next_alarm > 0 ? next_alarm : PYB_RTC_MIN_ALARM_TIME_MS;
pyb_rtc_calc_future_time (next_alarm, &f_seconds, &f_mseconds);
// now configure the alarm
pyb_rtc_set_alarm (self, f_seconds, f_mseconds);
}
}
void pyb_rtc_disable_alarm (void) {
pyb_rtc_obj.alarmset = false;
pyb_rtc_disable_interupt();
}
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
static void pyb_rtc_set_time (uint32_t secs, uint16_t msecs) {
// add the RTC access time
rtc_msec_add(RTC_ACCESS_TIME_MSEC, &secs, &msecs);
// convert from mseconds to cycles
msecs = RTC_U16MS_CYCLES(msecs);
// now set the time
MAP_PRCMRTCSet(secs, msecs);
}
static uint32_t pyb_rtc_reset (void) {
// fresh reset; configure the RTC Calendar
// set the date to 1st Jan 2015
// set the time to 00:00:00
uint32_t seconds = timeutils_seconds_since_2000(2015, 1, 1, 0, 0, 0);
// disable any running alarm
pyb_rtc_disable_alarm();
// Now set the RTC calendar time
pyb_rtc_set_time(seconds, 0);
return seconds;
}
static void pyb_rtc_disable_interupt (void) {
uint primsk = disable_irq();
MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
(void)MAP_PRCMIntStatus();
enable_irq(primsk);
}
static void pyb_rtc_irq_enable (mp_obj_t self_in) {
pyb_rtc_obj_t *self = self_in;
// we always need interrupts if repeat is enabled
if ((self->pwrmode & PYB_PWR_MODE_ACTIVE) || self->repeat) {
MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
} else { // just in case it was already enabled before
MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
}
self->irq_enabled = true;
}
static void pyb_rtc_irq_disable (mp_obj_t self_in) {
pyb_rtc_obj_t *self = self_in;
self->irq_enabled = false;
if (!self->repeat) { // we always need interrupts if repeat is enabled
pyb_rtc_disable_interupt();
}
}
static int pyb_rtc_irq_flags (mp_obj_t self_in) {
pyb_rtc_obj_t *self = self_in;
return self->irq_flags;
}
static uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds) {
timeutils_struct_time_t tm;
uint32_t useconds;
// set date and time
mp_obj_t *items;
size_t len;
mp_obj_get_array(datetime, &len, &items);
// verify the tuple
if (len < 3 || len > 8) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
tm.tm_year = mp_obj_get_int(items[0]);
tm.tm_mon = mp_obj_get_int(items[1]);
tm.tm_mday = mp_obj_get_int(items[2]);
if (len < 7) {
useconds = 0;
} else {
useconds = mp_obj_get_int(items[6]);
}
if (len < 6) {
tm.tm_sec = 0;
} else {
tm.tm_sec = mp_obj_get_int(items[5]);
}
if (len < 5) {
tm.tm_min = 0;
} else {
tm.tm_min = mp_obj_get_int(items[4]);
}
if (len < 4) {
tm.tm_hour = 0;
} else {
tm.tm_hour = mp_obj_get_int(items[3]);
}
*seconds = timeutils_seconds_since_2000(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);
return useconds;
}
/// The 8-tuple has the same format as CPython's datetime object:
///
/// (year, month, day, hours, minutes, seconds, milliseconds, tzinfo=None)
///
static mp_obj_t pyb_rtc_datetime(mp_obj_t self_in, const mp_obj_t datetime) {
uint32_t seconds;
uint32_t useconds;
if (datetime != MP_OBJ_NULL) {
useconds = pyb_rtc_datetime_s_us(datetime, &seconds);
pyb_rtc_set_time (seconds, useconds / 1000);
} else {
seconds = pyb_rtc_reset();
}
// set WLAN time and date, this is needed to verify certificates
wlan_set_current_time(seconds);
return mp_const_none;
}
static void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds) {
// disable the interrupt before updating anything
if (self->irq_enabled) {
MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR);
}
// set the match value
MAP_PRCMRTCMatchSet(seconds, RTC_U16MS_CYCLES(mseconds));
self->alarmset = true;
self->alarm_time_s = seconds;
self->alarm_time_ms = mseconds;
// enabled the interrupts again if applicable
if (self->irq_enabled || self->repeat) {
MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR);
}
}
static void rtc_msec_add (uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2) {
if (msecs_1 + *msecs_2 >= 1000) { // larger than one second
*msecs_2 = (msecs_1 + *msecs_2) - 1000;
*secs += 1; // carry flag
} else {
// simply add the mseconds
*msecs_2 = msecs_1 + *msecs_2;
}
}
/******************************************************************************/
// MicroPython bindings
static const mp_arg_t pyb_rtc_init_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_datetime, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
static mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
// parse args
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args)];
mp_arg_parse_all(n_args, all_args, &kw_args, MP_ARRAY_SIZE(args), pyb_rtc_init_args, args);
// check the peripheral id
if (args[0].u_int != 0) {
mp_raise_OSError(MP_ENODEV);
}
// setup the object
pyb_rtc_obj_t *self = &pyb_rtc_obj;
self->base.type = &pyb_rtc_type;
// set the time and date
pyb_rtc_datetime((mp_obj_t)&pyb_rtc_obj, args[1].u_obj);
// pass it to the sleep module
pyb_sleep_set_rtc_obj (self);
// return constant object
return (mp_obj_t)&pyb_rtc_obj;
}
static mp_obj_t pyb_rtc_init(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args) - 1];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), &pyb_rtc_init_args[1], args);
return pyb_rtc_datetime(pos_args[0], args[0].u_obj);
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_init_obj, 1, pyb_rtc_init);
static mp_obj_t pyb_rtc_now (mp_obj_t self_in) {
timeutils_struct_time_t tm;
uint32_t seconds;
uint16_t mseconds;
// get the time from the RTC
pyb_rtc_get_time(&seconds, &mseconds);
timeutils_seconds_since_2000_to_struct_time(seconds, &tm);
mp_obj_t tuple[8] = {
mp_obj_new_int(tm.tm_year),
mp_obj_new_int(tm.tm_mon),
mp_obj_new_int(tm.tm_mday),
mp_obj_new_int(tm.tm_hour),
mp_obj_new_int(tm.tm_min),
mp_obj_new_int(tm.tm_sec),
mp_obj_new_int(mseconds * 1000),
mp_const_none
};
return mp_obj_new_tuple(8, tuple);
}
static MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_now_obj, pyb_rtc_now);
static mp_obj_t pyb_rtc_deinit (mp_obj_t self_in) {
pyb_rtc_reset();
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_deinit_obj, pyb_rtc_deinit);
static mp_obj_t pyb_rtc_alarm(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_time, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_repeat, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
// parse args
pyb_rtc_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args);
// check the alarm id
if (args[0].u_int != 0) {
mp_raise_OSError(MP_ENODEV);
}
uint32_t f_seconds;
uint16_t f_mseconds;
bool repeat = args[2].u_bool;
if (mp_obj_is_type(args[1].u_obj, &mp_type_tuple)) { // datetime tuple given
// repeat cannot be used with a datetime tuple
if (repeat) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
f_mseconds = pyb_rtc_datetime_s_us (args[1].u_obj, &f_seconds) / 1000;
} else { // then it must be an integer
self->alarm_ms = mp_obj_get_int(args[1].u_obj);
pyb_rtc_calc_future_time (self->alarm_ms, &f_seconds, &f_mseconds);
}
// store the repepat flag
self->repeat = repeat;
// now configure the alarm
pyb_rtc_set_alarm (self, f_seconds, f_mseconds);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_alarm_obj, 1, pyb_rtc_alarm);
static mp_obj_t pyb_rtc_alarm_left(size_t n_args, const mp_obj_t *args) {
pyb_rtc_obj_t *self = args[0];
int32_t ms_left;
uint32_t c_seconds;
uint16_t c_mseconds;
// only alarm id 0 is available
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
mp_raise_OSError(MP_ENODEV);
}
// get the current time
pyb_rtc_get_time(&c_seconds, &c_mseconds);
// calculate the ms left
ms_left = ((self->alarm_time_s * 1000) + self->alarm_time_ms) - ((c_seconds * 1000) + c_mseconds);
if (!self->alarmset || ms_left < 0) {
ms_left = 0;
}
return mp_obj_new_int(ms_left);
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left);
static mp_obj_t pyb_rtc_alarm_cancel(size_t n_args, const mp_obj_t *args) {
// only alarm id 0 is available
if (n_args > 1 && mp_obj_get_int(args[1]) != 0) {
mp_raise_OSError(MP_ENODEV);
}
// disable the alarm
pyb_rtc_disable_alarm();
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_cancel_obj, 1, 2, pyb_rtc_alarm_cancel);
/// \method irq(trigger, priority, handler, wake)
static mp_obj_t pyb_rtc_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mp_irq_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mp_irq_INIT_NUM_ARGS, mp_irq_init_args, args);
pyb_rtc_obj_t *self = pos_args[0];
// save the power mode data for later
uint8_t pwrmode = (args[3].u_obj == mp_const_none) ? PYB_PWR_MODE_ACTIVE : mp_obj_get_int(args[3].u_obj);
if (pwrmode > (PYB_PWR_MODE_ACTIVE | PYB_PWR_MODE_LPDS | PYB_PWR_MODE_HIBERNATE)) {
goto invalid_args;
}
// check the trigger
if (mp_obj_get_int(args[0].u_obj) == PYB_RTC_ALARM0) {
self->pwrmode = pwrmode;
pyb_rtc_irq_enable((mp_obj_t)self);
} else {
goto invalid_args;
}
// the interrupt priority is ignored since it's already set to to highest level by the sleep module
// to make sure that the wakeup irqs are always called first when resuming from sleep
// create the callback
mp_obj_t _irq = mp_irq_new ((mp_obj_t)self, args[2].u_obj, &pyb_rtc_irq_methods);
self->irq_obj = _irq;
return _irq;
invalid_args:
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
static MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq);
static const mp_rom_map_elem_t pyb_rtc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_rtc_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_rtc_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_now), MP_ROM_PTR(&pyb_rtc_now_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm), MP_ROM_PTR(&pyb_rtc_alarm_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm_left), MP_ROM_PTR(&pyb_rtc_alarm_left_obj) },
{ MP_ROM_QSTR(MP_QSTR_alarm_cancel), MP_ROM_PTR(&pyb_rtc_alarm_cancel_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pyb_rtc_irq_obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_ALARM0), MP_ROM_INT(PYB_RTC_ALARM0) },
};
static MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
pyb_rtc_type,
MP_QSTR_RTC,
MP_TYPE_FLAG_NONE,
make_new, pyb_rtc_make_new,
locals_dict, &pyb_rtc_locals_dict
);
static const mp_irq_methods_t pyb_rtc_irq_methods = {
.init = pyb_rtc_irq,
.enable = pyb_rtc_irq_enable,
.disable = pyb_rtc_irq_disable,
.flags = pyb_rtc_irq_flags
};