Files
micropython/ports/esp32/esp32_pcnt.c
Jonathan Hogg c3f3339c87 esp32/modesp32: Add esp32.PCNT class.
Add a new `esp32.PCNT` class that provides complete, low-level support to
the ESP32 PCNT pulse counting hardware units.

This can be used as a building block to implement the higher-level
`machine.Counter` and `machine.Encoder` classes.

This is enabled by default on all OG, S2, S3, C6 boards, but not on C3 (as
the PCNT peripheral is not supported).

Original implementation by: Jonathan Hogg <me@jonathanhogg.com>

Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Signed-off-by: Angus Gratton <angus@redyak.com.au>
2025-08-01 23:45:18 +10:00

514 lines
19 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021-22 Jonathan Hogg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/obj.h"
#if MICROPY_PY_ESP32_PCNT
#include "shared/runtime/mpirq.h"
#include "modesp32.h"
#include "driver/pcnt.h"
#if !MICROPY_ENABLE_FINALISER
#error "esp32.PCNT requires MICROPY_ENABLE_FINALISER."
#endif
typedef struct _esp32_pcnt_irq_obj_t {
mp_irq_obj_t base;
uint32_t flags;
uint32_t trigger;
} esp32_pcnt_irq_obj_t;
typedef struct _esp32_pcnt_obj_t {
mp_obj_base_t base;
pcnt_unit_t unit;
esp32_pcnt_irq_obj_t *irq;
struct _esp32_pcnt_obj_t *next;
} esp32_pcnt_obj_t;
// Linked list of PCNT units.
MP_REGISTER_ROOT_POINTER(struct _esp32_pcnt_obj_t *esp32_pcnt_obj_head);
// Once off installation of the PCNT ISR service (using the default service).
// Persists across soft reset.
static bool pcnt_isr_service_installed = false;
static mp_obj_t esp32_pcnt_deinit(mp_obj_t self_in);
void esp32_pcnt_deinit_all(void) {
esp32_pcnt_obj_t **pcnt = &MP_STATE_PORT(esp32_pcnt_obj_head);
while (*pcnt != NULL) {
esp32_pcnt_deinit(MP_OBJ_FROM_PTR(*pcnt));
*pcnt = (*pcnt)->next;
}
}
static void esp32_pcnt_init_helper(esp32_pcnt_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_channel,
ARG_pin,
ARG_rising,
ARG_falling,
ARG_mode_pin,
ARG_mode_low,
ARG_mode_high,
ARG_min,
ARG_max,
ARG_filter,
ARG_threshold0,
ARG_threshold1,
ARG_value,
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_channel, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
// Applies to the channel.
{ MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_rising, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_falling, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mode_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mode_low, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mode_high, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
// Applies to the whole unit.
{ MP_QSTR_min, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_max, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_filter, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_threshold0, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_threshold1, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
// Implicitly zero if min, max, threshold0/1 are set.
{ MP_QSTR_value, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// The pin/mode_pin, rising, falling, mode_low, mode_high args all apply
// to the channel (defaults to channel zero).
mp_uint_t channel = args[ARG_channel].u_int;
if (channel >= PCNT_CHANNEL_MAX) {
mp_raise_ValueError(MP_ERROR_TEXT("channel"));
}
if (args[ARG_pin].u_obj != MP_OBJ_NULL || args[ARG_mode_pin].u_obj != MP_OBJ_NULL) {
// If you set mode_pin, you must also set pin.
if (args[ARG_pin].u_obj == MP_OBJ_NULL) {
mp_raise_ValueError(MP_ERROR_TEXT("pin"));
}
mp_hal_pin_obj_t pin = PCNT_PIN_NOT_USED;
mp_hal_pin_obj_t mode_pin = PCNT_PIN_NOT_USED;
// Set to None to disable pin/mode_pin.
if (args[ARG_pin].u_obj != mp_const_none) {
pin = mp_hal_get_pin_obj(args[ARG_pin].u_obj);
}
if (args[ARG_mode_pin].u_obj != MP_OBJ_NULL && args[ARG_mode_pin].u_obj != mp_const_none) {
mode_pin = mp_hal_get_pin_obj(args[ARG_mode_pin].u_obj);
}
pcnt_set_pin(self->unit, channel, pin, mode_pin);
}
if (
args[ARG_rising].u_obj != MP_OBJ_NULL || args[ARG_falling].u_obj != MP_OBJ_NULL ||
args[ARG_mode_low].u_obj != MP_OBJ_NULL || args[ARG_mode_high].u_obj != MP_OBJ_NULL
) {
mp_uint_t rising = args[ARG_rising].u_obj == MP_OBJ_NULL ? PCNT_COUNT_DIS : mp_obj_get_int(args[ARG_rising].u_obj);
mp_uint_t falling = args[ARG_falling].u_obj == MP_OBJ_NULL ? PCNT_COUNT_DIS : mp_obj_get_int(args[ARG_falling].u_obj);
mp_uint_t mode_low = args[ARG_mode_low].u_obj == MP_OBJ_NULL ? PCNT_MODE_KEEP : mp_obj_get_int(args[ARG_mode_low].u_obj);
mp_uint_t mode_high = args[ARG_mode_high].u_obj == MP_OBJ_NULL ? PCNT_MODE_KEEP : mp_obj_get_int(args[ARG_mode_high].u_obj);
if (rising >= PCNT_COUNT_MAX) {
mp_raise_ValueError(MP_ERROR_TEXT("rising"));
}
if (falling >= PCNT_COUNT_MAX) {
mp_raise_ValueError(MP_ERROR_TEXT("falling"));
}
if (mode_low >= PCNT_MODE_MAX) {
mp_raise_ValueError(MP_ERROR_TEXT("mode_low"));
}
if (mode_high >= PCNT_MODE_MAX) {
mp_raise_ValueError(MP_ERROR_TEXT("mode_high"));
}
pcnt_set_mode(self->unit, channel, rising, falling, mode_high, mode_low);
}
// The rest of the arguments apply to the whole unit.
if (args[ARG_filter].u_obj != MP_OBJ_NULL) {
mp_uint_t filter = mp_obj_get_int(args[ARG_filter].u_obj);
if (filter > 1023) {
mp_raise_ValueError(MP_ERROR_TEXT("filter"));
}
if (filter) {
check_esp_err(pcnt_set_filter_value(self->unit, filter));
check_esp_err(pcnt_filter_enable(self->unit));
} else {
check_esp_err(pcnt_filter_disable(self->unit));
}
}
bool clear = false;
if (args[ARG_value].u_obj != MP_OBJ_NULL) {
mp_int_t value = mp_obj_get_int(args[ARG_value].u_obj);
if (value != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("value"));
}
clear = true;
}
if (args[ARG_min].u_obj != MP_OBJ_NULL) {
mp_int_t minimum = mp_obj_get_int(args[ARG_min].u_obj);
if (minimum < -32768 || minimum > 0) {
mp_raise_ValueError(MP_ERROR_TEXT("minimum"));
}
check_esp_err(pcnt_set_event_value(self->unit, PCNT_EVT_L_LIM, minimum));
clear = true;
}
if (args[ARG_max].u_obj != MP_OBJ_NULL) {
mp_int_t maximum = mp_obj_get_int(args[ARG_max].u_obj);
if (maximum < 0 || maximum > 32767) {
mp_raise_ValueError(MP_ERROR_TEXT("maximum"));
}
check_esp_err(pcnt_set_event_value(self->unit, PCNT_EVT_H_LIM, maximum));
clear = true;
}
if (args[ARG_threshold0].u_obj != MP_OBJ_NULL) {
mp_int_t threshold0 = mp_obj_get_int(args[ARG_threshold0].u_obj);
if (threshold0 < -32768 || threshold0 > 32767) {
mp_raise_ValueError(MP_ERROR_TEXT("threshold0"));
}
check_esp_err(pcnt_set_event_value(self->unit, PCNT_EVT_THRES_0, threshold0));
clear = true;
}
if (args[ARG_threshold1].u_obj != MP_OBJ_NULL) {
mp_int_t threshold1 = mp_obj_get_int(args[ARG_threshold1].u_obj);
if (threshold1 < -32768 || threshold1 > 32767) {
mp_raise_ValueError(MP_ERROR_TEXT("threshold1"));
}
check_esp_err(pcnt_set_event_value(self->unit, PCNT_EVT_THRES_1, threshold1));
clear = true;
}
if (clear) {
check_esp_err(pcnt_counter_clear(self->unit));
}
}
// Disable any events, and remove the ISR handler for this unit.
static void esp32_pcnt_disable_events_for_unit(esp32_pcnt_obj_t *self) {
if (!self->irq) {
return;
}
// Disable all possible events and remove the ISR.
for (pcnt_evt_type_t evt_type = PCNT_EVT_THRES_1; evt_type <= PCNT_EVT_ZERO; evt_type <<= 1) {
check_esp_err(pcnt_event_disable(self->unit, evt_type));
}
check_esp_err(pcnt_isr_handler_remove(self->unit));
// Clear IRQ object state.
self->irq->base.handler = mp_const_none;
self->irq->trigger = 0;
}
static mp_obj_t esp32_pcnt_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) {
if (n_pos_args < 1) {
mp_raise_TypeError(MP_ERROR_TEXT("id"));
}
pcnt_unit_t unit = mp_obj_get_int(args[0]);
if (unit < 0 || unit >= PCNT_UNIT_MAX) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
}
// Try and find an existing instance for this unit.
esp32_pcnt_obj_t *self = MP_STATE_PORT(esp32_pcnt_obj_head);
while (self) {
if (self->unit == unit) {
break;
}
self = self->next;
}
if (!self) {
// Unused unit, create a new esp32_pcnt_obj_t instance and put it at
// the head of the list.
self = mp_obj_malloc(esp32_pcnt_obj_t, &esp32_pcnt_type);
self->unit = unit;
self->irq = NULL;
self->next = MP_STATE_PORT(esp32_pcnt_obj_head);
MP_STATE_PORT(esp32_pcnt_obj_head) = self;
// Ensure the unit is in a known (deactivated) state.
esp32_pcnt_deinit(MP_OBJ_FROM_PTR(self));
}
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args);
esp32_pcnt_init_helper(self, 0, args + n_pos_args, &kw_args);
// Ensure the global PCNT ISR service is installed.
if (!pcnt_isr_service_installed) {
check_esp_err(pcnt_isr_service_install(ESP_INTR_FLAG_IRAM));
pcnt_isr_service_installed = true;
}
// And enable for this unit.
check_esp_err(pcnt_intr_enable(self->unit));
return MP_OBJ_FROM_PTR(self);
}
static void esp32_pcnt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "PCNT(%u)", self->unit);
}
static mp_obj_t esp32_pcnt_init(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
esp32_pcnt_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(esp32_pcnt_init_obj, 1, esp32_pcnt_init);
static mp_obj_t esp32_pcnt_deinit(mp_obj_t self_in) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(self_in);
// Remove IRQ and events.
esp32_pcnt_disable_events_for_unit(self);
// Deactivate both channels.
pcnt_config_t channel_config = {
.unit = self->unit,
.pulse_gpio_num = PCNT_PIN_NOT_USED,
.pos_mode = PCNT_COUNT_DIS,
.neg_mode = PCNT_COUNT_DIS,
.ctrl_gpio_num = PCNT_PIN_NOT_USED,
.lctrl_mode = PCNT_MODE_KEEP,
.hctrl_mode = PCNT_MODE_KEEP,
.counter_l_lim = 0,
.counter_h_lim = 0,
};
for (pcnt_channel_t channel = 0; channel <= 1; ++channel) {
channel_config.channel = channel;
check_esp_err(pcnt_unit_config(&channel_config));
}
// Disable filters & thresholds, pause & clear.
check_esp_err(pcnt_filter_disable(self->unit));
check_esp_err(pcnt_set_event_value(self->unit, PCNT_EVT_THRES_0, 0));
check_esp_err(pcnt_set_event_value(self->unit, PCNT_EVT_THRES_1, 0));
check_esp_err(pcnt_counter_pause(self->unit));
check_esp_err(pcnt_counter_clear(self->unit));
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp32_pcnt_deinit_obj, esp32_pcnt_deinit);
static mp_obj_t esp32_pcnt_value(size_t n_args, const mp_obj_t *pos_args) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
// Optionally use pcnt.value(True) to clear the counter but only support a
// value of zero. Note: This can lead to skipped counts.
if (n_args == 2) {
if (mp_obj_get_int(pos_args[1]) != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("value"));
}
}
// This loop ensures that the caller's state (as inferred from IRQs, e.g.
// under/overflow) corresponds to the returned value, by synchronously
// flushing all pending IRQs.
int16_t value;
while (true) {
check_esp_err(pcnt_get_counter_value(self->unit, &value));
if (self->irq && self->irq->flags && self->irq->base.handler != mp_const_none) {
// The handler must call irq.flags() to clear self->irq->base.flags,
// otherwise this will be an infinite loop.
mp_call_function_1(self->irq->base.handler, self->irq->base.parent);
} else {
break;
}
}
if (n_args == 2) {
// Value was given, and we've already checked it was zero, so clear
// the counter.
check_esp_err(pcnt_counter_clear(self->unit));
}
return MP_OBJ_NEW_SMALL_INT(value);
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_pcnt_value_obj, 1, 2, esp32_pcnt_value);
static mp_uint_t esp32_pcnt_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(self_in);
self->irq->trigger = new_trigger;
for (pcnt_evt_type_t evt_type = PCNT_EVT_THRES_1; evt_type <= PCNT_EVT_ZERO; evt_type <<= 1) {
if (new_trigger & evt_type) {
pcnt_event_enable(self->unit, evt_type);
} else {
pcnt_event_disable(self->unit, evt_type);
}
}
return 0;
}
static mp_uint_t esp32_pcnt_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (info_type == MP_IRQ_INFO_FLAGS) {
// Atomically get-and-clear the flags.
mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION();
mp_uint_t flags = self->irq->flags;
self->irq->flags = 0;
MICROPY_END_ATOMIC_SECTION(atomic_state);
return flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return self->irq->trigger;
}
return 0;
}
static const mp_irq_methods_t esp32_pcnt_irq_methods = {
.trigger = esp32_pcnt_irq_trigger,
.info = esp32_pcnt_irq_info,
};
static IRAM_ATTR void esp32_pcnt_intr_handler(void *arg) {
esp32_pcnt_obj_t *self = (esp32_pcnt_obj_t *)arg;
pcnt_unit_t unit = self->unit;
uint32_t status;
pcnt_get_event_status(unit, &status);
mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION();
self->irq->flags |= status;
MICROPY_END_ATOMIC_SECTION(atomic_state);
mp_irq_handler(&self->irq->base);
}
static mp_obj_t esp32_pcnt_irq(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_handler, ARG_trigger };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_handler, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_trigger, MP_ARG_INT, {.u_int = PCNT_EVT_ZERO} },
};
esp32_pcnt_obj_t *self = pos_args[0];
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_pos_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
if (!self->irq) {
// Create IRQ object if necessary. This instance persists across a
// de-init.
self->irq = mp_obj_malloc(esp32_pcnt_irq_obj_t, &mp_irq_type);
self->irq->base.methods = (mp_irq_methods_t *)&esp32_pcnt_irq_methods;
self->irq->base.parent = MP_OBJ_FROM_PTR(self);
self->irq->base.ishard = false;
self->irq->base.handler = mp_const_none;
self->irq->trigger = 0;
}
if (n_pos_args > 1 || kw_args->used != 0) {
// Update IRQ data.
mp_obj_t handler = args[ARG_handler].u_obj;
mp_uint_t trigger = args[ARG_trigger].u_int;
if (trigger < PCNT_EVT_THRES_1 || trigger >= (PCNT_EVT_ZERO << 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("trigger"));
}
if (handler != mp_const_none) {
self->irq->base.handler = handler;
self->irq->trigger = trigger;
pcnt_isr_handler_add(self->unit, esp32_pcnt_intr_handler, (void *)self);
esp32_pcnt_irq_trigger(MP_OBJ_FROM_PTR(self), trigger);
} else {
// Remove the ISR, disable all events, clear the IRQ object state.
esp32_pcnt_disable_events_for_unit(self);
}
}
return MP_OBJ_FROM_PTR(self->irq);
}
static MP_DEFINE_CONST_FUN_OBJ_KW(esp32_pcnt_irq_obj, 1, esp32_pcnt_irq);
static mp_obj_t esp32_pcnt_start(mp_obj_t self_in) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_esp_err(pcnt_counter_resume(self->unit));
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp32_pcnt_start_obj, esp32_pcnt_start);
static mp_obj_t esp32_pcnt_stop(mp_obj_t self_in) {
esp32_pcnt_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_esp_err(pcnt_counter_pause(self->unit));
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp32_pcnt_stop_obj, esp32_pcnt_stop);
static const mp_rom_map_elem_t esp32_pcnt_locals_dict_table[] = {
// Methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&esp32_pcnt_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_value), MP_ROM_PTR(&esp32_pcnt_value_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&esp32_pcnt_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_start), MP_ROM_PTR(&esp32_pcnt_start_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&esp32_pcnt_stop_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_pcnt_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_pcnt_deinit_obj) },
// Constants
{ MP_ROM_QSTR(MP_QSTR_IGNORE), MP_ROM_INT(PCNT_COUNT_DIS) },
{ MP_ROM_QSTR(MP_QSTR_INCREMENT), MP_ROM_INT(PCNT_COUNT_INC) },
{ MP_ROM_QSTR(MP_QSTR_DECREMENT), MP_ROM_INT(PCNT_COUNT_DEC) },
{ MP_ROM_QSTR(MP_QSTR_NORMAL), MP_ROM_INT(PCNT_MODE_KEEP) },
{ MP_ROM_QSTR(MP_QSTR_REVERSE), MP_ROM_INT(PCNT_MODE_REVERSE) },
{ MP_ROM_QSTR(MP_QSTR_HOLD), MP_ROM_INT(PCNT_MODE_DISABLE) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_ZERO), MP_ROM_INT(PCNT_EVT_ZERO) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_THRESHOLD0), MP_ROM_INT(PCNT_EVT_THRES_0) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_THRESHOLD1), MP_ROM_INT(PCNT_EVT_THRES_1) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_MIN), MP_ROM_INT(PCNT_EVT_L_LIM) },
{ MP_ROM_QSTR(MP_QSTR_IRQ_MAX), MP_ROM_INT(PCNT_EVT_H_LIM) },
};
static MP_DEFINE_CONST_DICT(esp32_pcnt_locals_dict, esp32_pcnt_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
esp32_pcnt_type,
MP_QSTR_PCNT,
MP_TYPE_FLAG_NONE,
make_new, esp32_pcnt_make_new,
print, esp32_pcnt_print,
locals_dict, &esp32_pcnt_locals_dict
);
#endif // MICROPY_PY_ESP32_PCNT