Files
micropython/ports/zephyr/mpthreadport.c
danicampora d68d8fcf90 zephyr: Re-implement the Zephyr console in non-blocking mode.
The standard Zephyr console implementation doesn't make use of
`tty_set_rx_timeout()` and therefore all the functions to receive
characters block indefinitely until data is received (including
`console_read()`).

This commit also releases the GIL where it applies, e.g. the REPL and the
time sleep functions.

Signed-off-by: danicampora <danicampora@gmail.com>
2024-09-06 20:42:56 +10:00

309 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd
* Copyright (c) 2017 Pycom Limited
* Copyright (c) 2024 Daniel Campora on behalf of REMOTE TECH LTD
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mpthread.h"
#include "py/mphal.h"
#if MICROPY_PY_THREAD
#define DEBUG_printf(...) // printk("_thread: " __VA_ARGS__)
#define MP_THREAD_MIN_STACK_SIZE (4 * 1024)
#define MP_THREAD_DEFAULT_STACK_SIZE (MP_THREAD_MIN_STACK_SIZE + 1024)
#define MP_THREAD_PRIORITY (k_thread_priority_get(k_current_get())) // same priority as the main thread
#define MP_THREAD_MAXIMUM_USER_THREADS (4)
typedef enum {
MP_THREAD_STATUS_CREATED = 0,
MP_THREAD_STATUS_READY,
MP_THREAD_STATUS_FINISHED,
} mp_thread_status_t;
typedef struct _mp_thread_slot_t {
bool used;
} mp_thread_stack_slot_t;
// this structure forms a linked list, one node per active thread
typedef struct _mp_thread_t {
k_tid_t id; // system id of thread (this is actually a pointer to z_thread below)
struct k_thread z_thread; // the zephyr thread object
mp_thread_status_t status; // whether the thread is created, ready, or finished
int16_t alive; // whether the thread is still visible by the kernel
int16_t slot; // slot index in the stack pool
void *arg; // thread Python args, a GC root pointer
void *stack; // pointer to the stack
size_t stack_len; // number of words in the stack
struct _mp_thread_t *next;
} mp_thread_t;
// the mutex controls access to the linked list
static mp_thread_mutex_t thread_mutex;
static mp_thread_t thread_entry0;
static mp_thread_t *thread = NULL; // root pointer, handled by mp_thread_gc_others
static uint8_t mp_thread_counter;
static mp_thread_stack_slot_t stack_slot[MP_THREAD_MAXIMUM_USER_THREADS];
K_THREAD_STACK_ARRAY_DEFINE(mp_thread_stack_array, MP_THREAD_MAXIMUM_USER_THREADS, MP_THREAD_DEFAULT_STACK_SIZE);
static void mp_thread_iterate_threads_cb(const struct k_thread *thread, void *user_data);
static int32_t mp_thread_find_stack_slot(void);
void mp_thread_init(void *stack, uint32_t stack_len) {
mp_thread_set_state(&mp_state_ctx.thread);
// create the first entry in the linked list of all threads
thread_entry0.id = k_current_get();
thread_entry0.status = MP_THREAD_STATUS_READY;
thread_entry0.alive = 1;
thread_entry0.arg = NULL;
thread_entry0.stack = stack;
thread_entry0.stack_len = stack_len;
thread_entry0.next = NULL;
k_thread_name_set(thread_entry0.id, "mp_main");
mp_thread_counter = 0;
mp_thread_mutex_init(&thread_mutex);
// memory barrier to ensure above data is committed
__sync_synchronize();
thread = &thread_entry0;
}
void mp_thread_gc_others(void) {
mp_thread_t *prev = NULL;
if (thread == NULL) {
// threading not yet initialised
return;
}
mp_thread_mutex_lock(&thread_mutex, 1);
// get the kernel to iterate over all the existing threads
DEBUG_printf("Iterating...\n");
k_thread_foreach(mp_thread_iterate_threads_cb, NULL);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
// unlink non-alive thread nodes from the list
if ((th->status == MP_THREAD_STATUS_FINISHED) && !th->alive) {
if (prev != NULL) {
prev->next = th->next;
} else {
// move the start pointer
thread = th->next;
}
stack_slot[th->slot].used = false;
mp_thread_counter--;
DEBUG_printf("Collecting thread %s\n", k_thread_name_get(th->id));
// The "th" memory will eventually be reclaimed by the GC
} else {
th->alive = 0;
prev = th;
}
}
DEBUG_printf("mp_thread_gc_others from %s\n", k_thread_name_get(k_current_get()));
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
DEBUG_printf("%s\n", k_thread_name_get(th->id));
gc_collect_root((void **)&th, 1);
gc_collect_root(&th->arg, 1);
// gc_collect_root(&th->stack, 1); // will be needed later when the stack is allocated from the gc heap
if (th->id == k_current_get()) {
continue;
}
if (th->status != MP_THREAD_STATUS_READY) {
continue;
}
gc_collect_root(th->stack, th->stack_len);
}
mp_thread_mutex_unlock(&thread_mutex);
}
mp_state_thread_t *mp_thread_get_state(void) {
return (mp_state_thread_t *)k_thread_custom_data_get();
}
void mp_thread_set_state(mp_state_thread_t *state) {
k_thread_custom_data_set((void *)state);
}
mp_uint_t mp_thread_get_id(void) {
return (mp_uint_t)k_current_get();
}
void mp_thread_start(void) {
mp_thread_mutex_lock(&thread_mutex, 1);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == k_current_get()) {
th->status = MP_THREAD_STATUS_READY;
break;
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
static void zephyr_entry(void *arg1, void *arg2, void *arg3) {
(void)arg3;
// arg1 contains the python thread entry point
if (arg1) {
void *(*entry)(void *) = arg1;
entry(arg2);
}
k_thread_abort(k_current_get());
for (;;) {;
}
}
mp_uint_t mp_thread_create_ex(void *(*entry)(void *), void *arg, size_t *stack_size, int priority, char *name) {
// TODO: we need to support for CONFIG_DYNAMIC_THREAD in order to dynamically create allocate the stack of a thread
// if (*stack_size == 0) {
// *stack_size = MP_THREAD_DEFAULT_STACK_SIZE; // default stack size
// } else if (*stack_size < MP_THREAD_MIN_STACK_SIZE) {
// *stack_size = MP_THREAD_MIN_STACK_SIZE; // minimum stack size
// }
// in case some threads have finished but their stack has not been collected yet
gc_collect();
// Allocate linked-list node (must be outside thread_mutex lock)
mp_thread_t *th = m_new_obj(mp_thread_t);
mp_thread_mutex_lock(&thread_mutex, 1);
int32_t _slot = mp_thread_find_stack_slot();
if (_slot >= 0) {
// create thread
th->id = k_thread_create(&th->z_thread, mp_thread_stack_array[_slot], K_THREAD_STACK_SIZEOF(mp_thread_stack_array[_slot]),
zephyr_entry, entry, arg, NULL, priority, 0, K_NO_WAIT);
if (th->id == NULL) {
mp_thread_mutex_unlock(&thread_mutex);
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("can't create thread"));
}
k_thread_name_set(th->id, (const char *)name);
} else {
mp_thread_mutex_unlock(&thread_mutex);
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("maximum number of threads reached"));
}
// add thread to linked list of all threads
th->status = MP_THREAD_STATUS_CREATED;
th->alive = 0;
th->slot = _slot;
th->arg = arg;
th->stack = (void *)th->z_thread.stack_info.start;
th->stack_len = th->z_thread.stack_info.size / sizeof(uintptr_t);
th->next = thread;
thread = th;
stack_slot[_slot].used = true;
mp_thread_counter++;
// adjust the stack_size to provide room to recover from hitting the limit
*stack_size = th->z_thread.stack_info.size - 1024;
mp_thread_mutex_unlock(&thread_mutex);
return (mp_uint_t)th->id;
}
mp_uint_t mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) {
char _name[16];
snprintf(_name, sizeof(_name), "mp_thread_%d", mp_thread_counter);
return mp_thread_create_ex(entry, arg, stack_size, MP_THREAD_PRIORITY, _name);
}
void mp_thread_finish(void) {
mp_thread_mutex_lock(&thread_mutex, 1);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == k_current_get()) {
th->status = MP_THREAD_STATUS_FINISHED;
DEBUG_printf("Finishing thread %s\n", k_thread_name_get(th->id));
break;
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
void mp_thread_mutex_init(mp_thread_mutex_t *mutex) {
// Need a binary semaphore so a lock can be acquired on one Python thread
// and then released on another.
k_sem_init(&mutex->handle, 0, 1);
k_sem_give(&mutex->handle);
}
int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) {
return k_sem_take(&mutex->handle, wait ? K_FOREVER : K_NO_WAIT) == 0;
}
void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) {
k_sem_give(&mutex->handle);
k_yield();
}
void mp_thread_deinit(void) {
// abort all threads except for the main thread
mp_thread_mutex_lock(&thread_mutex, 1);
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
// don't delete the current task
if ((th->id != k_current_get()) && (th->status != MP_THREAD_STATUS_FINISHED)) {
th->status = MP_THREAD_STATUS_FINISHED;
DEBUG_printf("De-initializing thread %s\n", k_thread_name_get(th->id));
k_thread_abort(th->id);
}
}
mp_thread_mutex_unlock(&thread_mutex);
}
static void mp_thread_iterate_threads_cb(const struct k_thread *z_thread, void *user_data) {
for (mp_thread_t *th = thread; th != NULL; th = th->next) {
if (th->id == (struct k_thread *)z_thread) {
th->alive = 1;
DEBUG_printf("Found thread %s\n", k_thread_name_get(th->id));
}
}
}
static int32_t mp_thread_find_stack_slot(void) {
for (int i = 0; i < MP_THREAD_MAXIMUM_USER_THREADS; i++) {
if (!stack_slot[i].used) {
DEBUG_printf("Allocating stack slot %d\n", i);
return i;
}
}
return -1;
}
#endif // MICROPY_PY_THREAD