Files
micropython/py/asmrv32.c
Alessandro Gatti a8e0369826 py/asmrv32: Implement the full set of Viper load/store operations.
This commit expands the implementation of Viper load/store operations
that are optimised for the RV32 platform.

Given the way opcodes are encoded, all value sizes are implemented with
only two functions - one for loads and one for stores.  This should
reduce duplication with existing operations and should, in theory, save
space as some code is removed.  Both load and store emitters will
generate the shortest possible sequence (as long as the stack pointer is
not involved), using compressed opcodes when possible.

Signed-off-by: Alessandro Gatti <a.gatti@frob.it>
2025-07-01 15:34:29 +10:00

599 lines
21 KiB
C

/*
* This file is part of the MicroPython project, https://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2024 Alessandro Gatti
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/emit.h"
#include "py/misc.h"
#include "py/mpconfig.h"
// wrapper around everything in this file
#if MICROPY_EMIT_RV32
#include "py/asmrv32.h"
#if MICROPY_DEBUG_VERBOSE
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else
#define DEBUG_printf(...) (void)0
#endif
#define INTERNAL_TEMPORARY ASM_RV32_REG_S0
#define FIT_UNSIGNED(value, bits) (((value) & ~((1U << (bits)) - 1)) == 0)
#define FIT_SIGNED(value, bits) \
((((value) & ~((1U << ((bits) - 1)) - 1)) == 0) || \
(((value) & ~((1U << ((bits) - 1)) - 1)) == ~((1U << ((bits) - 1)) - 1)))
///////////////////////////////////////////////////////////////////////////////
void asm_rv32_emit_word_opcode(asm_rv32_t *state, mp_uint_t word) {
uint8_t *cursor = mp_asm_base_get_cur_to_write_bytes(&state->base, sizeof(uint32_t));
if (cursor == NULL) {
return;
}
#if MP_ENDIANNESS_LITTLE
cursor[0] = word & 0xFF;
cursor[1] = (word >> 8) & 0xFF;
cursor[2] = (word >> 16) & 0xFF;
cursor[3] = (word >> 24) & 0xFF;
#else
cursor[0] = (word >> 24) & 0xFF;
cursor[1] = (word >> 16) & 0xFF;
cursor[2] = (word >> 8) & 0xFF;
cursor[3] = word & 0xFF;
#endif
}
void asm_rv32_emit_halfword_opcode(asm_rv32_t *state, mp_uint_t word) {
uint8_t *cursor = mp_asm_base_get_cur_to_write_bytes(&state->base, sizeof(uint16_t));
if (cursor == NULL) {
return;
}
#if MP_ENDIANNESS_LITTLE
cursor[0] = word & 0xFF;
cursor[1] = (word >> 8) & 0xFF;
#else
cursor[0] = (word >> 8) & 0xFF;
cursor[1] = word & 0xFF;
#endif
}
///////////////////////////////////////////////////////////////////////////////
static void split_immediate(mp_int_t immediate, mp_uint_t *upper, mp_uint_t *lower) {
assert(upper != NULL && "Upper pointer is NULL.");
assert(lower != NULL && "Lower pointer is NULL.");
mp_uint_t unsigned_immediate = *((mp_uint_t *)&immediate);
*upper = unsigned_immediate & 0xFFFFF000;
*lower = unsigned_immediate & 0x00000FFF;
// Turn the lower half from unsigned to signed.
if ((*lower & 0x800) != 0) {
*upper += 0x1000;
}
}
static void load_upper_immediate(asm_rv32_t *state, mp_uint_t rd, mp_uint_t immediate) {
// if immediate fits in 17 bits and is ≠ 0:
// c.lui rd, HI(immediate)
// else:
// lui rd, HI(immediate)
if (FIT_SIGNED(immediate, 17) && ((immediate >> 12) != 0)) {
asm_rv32_opcode_clui(state, rd, immediate);
} else {
asm_rv32_opcode_lui(state, rd, immediate);
}
}
static void load_lower_immediate(asm_rv32_t *state, mp_uint_t rd, mp_uint_t immediate) {
// WARNING: This must be executed on a register that has either been
// previously cleared or was the target of a LUI/C.LUI or
// AUIPC opcode.
if (immediate == 0) {
return;
}
// if LO(immediate) fits in 6 bits:
// c.addi rd, LO(immediate)
// else:
// addi rd, rd, LO(immediate)
if (FIT_SIGNED(immediate, 6)) {
asm_rv32_opcode_caddi(state, rd, immediate);
} else {
asm_rv32_opcode_addi(state, rd, rd, immediate);
}
}
static void load_full_immediate(asm_rv32_t *state, mp_uint_t rd, mp_int_t immediate) {
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(immediate, &upper, &lower);
// if immediate fits in 17 bits:
// c.lui rd, HI(immediate)
// else:
// lui rd, HI(immediate)
// if LO(immediate) fits in 6 bits && LO(immediate) != 0:
// c.addi rd, LO(immediate)
// else:
// addi rd, rd, LO(immediate)
load_upper_immediate(state, rd, upper);
load_lower_immediate(state, rd, lower);
}
void asm_rv32_emit_optimised_load_immediate(asm_rv32_t *state, mp_uint_t rd, mp_int_t immediate) {
if (FIT_SIGNED(immediate, 6)) {
// c.li rd, immediate
asm_rv32_opcode_cli(state, rd, immediate);
return;
}
if (FIT_SIGNED(immediate, 12)) {
// addi rd, zero, immediate
asm_rv32_opcode_addi(state, rd, ASM_RV32_REG_ZERO, immediate);
return;
}
load_full_immediate(state, rd, immediate);
}
// RV32 does not have dedicated push/pop opcodes, so series of loads and
// stores are generated in their place.
static void emit_registers_store(asm_rv32_t *state, mp_uint_t registers_mask) {
mp_uint_t offset = 0;
for (mp_uint_t register_index = 0; register_index < RV32_AVAILABLE_REGISTERS_COUNT; register_index++) {
if (registers_mask & (1U << register_index)) {
assert(FIT_UNSIGNED(offset >> 2, 6) && "Registers save stack offset out of range.");
// c.swsp register, offset
asm_rv32_opcode_cswsp(state, register_index, offset);
offset += sizeof(uint32_t);
}
}
}
static void emit_registers_load(asm_rv32_t *state, mp_uint_t registers_mask) {
mp_uint_t offset = 0;
for (mp_uint_t register_index = 0; register_index < RV32_AVAILABLE_REGISTERS_COUNT; register_index++) {
if (registers_mask & (1U << register_index)) {
assert(FIT_UNSIGNED(offset >> 2, 6) && "Registers load stack offset out of range.");
// c.lwsp register, offset
asm_rv32_opcode_clwsp(state, register_index, offset);
offset += sizeof(uint32_t);
}
}
}
static void adjust_stack(asm_rv32_t *state, mp_int_t stack_size) {
if (stack_size == 0) {
return;
}
if (FIT_SIGNED(stack_size, 6)) {
// c.addi sp, stack_size
asm_rv32_opcode_caddi(state, ASM_RV32_REG_SP, stack_size);
return;
}
if (FIT_SIGNED(stack_size, 12)) {
// addi sp, sp, stack_size
asm_rv32_opcode_addi(state, ASM_RV32_REG_SP, ASM_RV32_REG_SP, stack_size);
return;
}
// li temporary, stack_size
// c.add sp, temporary
load_full_immediate(state, REG_TEMP0, stack_size);
asm_rv32_opcode_cadd(state, ASM_RV32_REG_SP, REG_TEMP0);
}
// Generate a generic function entry prologue code sequence, setting up the
// stack to hold all the tainted registers and an arbitrary amount of space
// for locals.
static void emit_function_prologue(asm_rv32_t *state, mp_uint_t registers) {
mp_uint_t registers_count = mp_popcount(registers);
state->stack_size = (registers_count + state->locals_count) * sizeof(uint32_t);
mp_uint_t old_saved_registers_mask = state->saved_registers_mask;
// Move stack pointer up.
adjust_stack(state, -state->stack_size);
// Store registers at the top of the saved stack area.
emit_registers_store(state, registers);
state->locals_stack_offset = registers_count * sizeof(uint32_t);
state->saved_registers_mask = old_saved_registers_mask;
}
// Restore registers and reset the stack pointer to its initial value.
static void emit_function_epilogue(asm_rv32_t *state, mp_uint_t registers) {
mp_uint_t old_saved_registers_mask = state->saved_registers_mask;
// Restore registers from the top of the stack area.
emit_registers_load(state, registers);
// Move stack pointer down.
adjust_stack(state, state->stack_size);
state->saved_registers_mask = old_saved_registers_mask;
}
static bool calculate_displacement_for_label(asm_rv32_t *state, mp_uint_t label, ptrdiff_t *displacement) {
assert(displacement != NULL && "Displacement pointer is NULL");
mp_uint_t label_offset = state->base.label_offsets[label];
*displacement = (ptrdiff_t)(label_offset - state->base.code_offset);
return (label_offset != (mp_uint_t)-1) && (*displacement < 0);
}
///////////////////////////////////////////////////////////////////////////////
void asm_rv32_entry(asm_rv32_t *state, mp_uint_t locals) {
state->saved_registers_mask |= (1U << REG_FUN_TABLE) | (1U << REG_LOCAL_1) | \
(1U << REG_LOCAL_2) | (1U << REG_LOCAL_3);
state->locals_count = locals;
emit_function_prologue(state, state->saved_registers_mask);
}
void asm_rv32_exit(asm_rv32_t *state) {
emit_function_epilogue(state, state->saved_registers_mask);
// c.jr ra
asm_rv32_opcode_cjr(state, ASM_RV32_REG_RA);
}
void asm_rv32_end_pass(asm_rv32_t *state) {
(void)state;
}
void asm_rv32_emit_call_ind(asm_rv32_t *state, mp_uint_t index) {
mp_uint_t offset = index * ASM_WORD_SIZE;
state->saved_registers_mask |= (1U << ASM_RV32_REG_RA);
if (RV32_IS_IN_C_REGISTER_WINDOW(REG_FUN_TABLE) && RV32_IS_IN_C_REGISTER_WINDOW(INTERNAL_TEMPORARY) && FIT_UNSIGNED(offset, 6)) {
state->saved_registers_mask |= (1U << INTERNAL_TEMPORARY);
// c.lw temporary, offset(fun_table)
// c.jalr temporary
asm_rv32_opcode_clw(state, RV32_MAP_IN_C_REGISTER_WINDOW(INTERNAL_TEMPORARY), RV32_MAP_IN_C_REGISTER_WINDOW(REG_FUN_TABLE), offset);
asm_rv32_opcode_cjalr(state, INTERNAL_TEMPORARY);
return;
}
if (FIT_UNSIGNED(offset, 11)) {
// lw temporary, offset(fun_table)
// c.jalr temporary
asm_rv32_opcode_lw(state, REG_TEMP2, REG_FUN_TABLE, offset);
asm_rv32_opcode_cjalr(state, REG_TEMP2);
return;
}
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(offset, &upper, &lower);
// lui temporary, HI(index) ; Or c.lui if possible
// c.add temporary, fun_table
// lw temporary, LO(index)(temporary)
// c.jalr temporary
load_upper_immediate(state, REG_TEMP2, upper);
asm_rv32_opcode_cadd(state, REG_TEMP2, REG_FUN_TABLE);
asm_rv32_opcode_lw(state, REG_TEMP2, REG_TEMP2, lower);
asm_rv32_opcode_cjalr(state, REG_TEMP2);
}
void asm_rv32_emit_jump_if_reg_eq(asm_rv32_t *state, mp_uint_t rs1, mp_uint_t rs2, mp_uint_t label) {
ptrdiff_t displacement = 0;
bool can_emit_short_jump = calculate_displacement_for_label(state, label, &displacement);
if (can_emit_short_jump && FIT_SIGNED(displacement, 13)) {
// beq rs1, rs2, displacement
asm_rv32_opcode_beq(state, rs1, rs2, displacement);
return;
}
// Compensate for the initial BNE opcode.
displacement -= ASM_WORD_SIZE;
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(displacement, &upper, &lower);
// bne rs1, rs2, 12 ; PC + 0
// auipc temporary, HI(displacement) ; PC + 4
// jalr zero, temporary, LO(displacement) ; PC + 8
// ... ; PC + 12
asm_rv32_opcode_bne(state, rs1, rs2, 12);
asm_rv32_opcode_auipc(state, REG_TEMP2, upper);
asm_rv32_opcode_jalr(state, ASM_RV32_REG_ZERO, REG_TEMP2, lower);
}
void asm_rv32_emit_jump_if_reg_nonzero(asm_rv32_t *state, mp_uint_t rs, mp_uint_t label) {
ptrdiff_t displacement = 0;
bool can_emit_short_jump = calculate_displacement_for_label(state, label, &displacement);
if (can_emit_short_jump && FIT_SIGNED(displacement, 8) && RV32_IS_IN_C_REGISTER_WINDOW(rs)) {
// c.bnez rs', displacement
asm_rv32_opcode_cbnez(state, RV32_MAP_IN_C_REGISTER_WINDOW(rs), displacement);
return;
}
if (can_emit_short_jump && FIT_SIGNED(displacement, 13)) {
// bne rs, zero, displacement
asm_rv32_opcode_bne(state, rs, ASM_RV32_REG_ZERO, displacement);
return;
}
// if rs1 in C window and displacement is negative:
// c.beqz rs', 10 ; PC + 0
// auipc temporary, HI(displacement) ; PC + 2
// jalr zero, temporary, LO(displacement) ; PC + 6
// ... ; PC + 10
// else:
// beq rs, zero, 12 ; PC + 0
// auipc temporary, HI(displacement) ; PC + 4
// jalr zero, temporary, LO(displacement) ; PC + 8
// ... ; PC + 12
if (can_emit_short_jump && RV32_IS_IN_C_REGISTER_WINDOW(rs)) {
asm_rv32_opcode_cbeqz(state, RV32_MAP_IN_C_REGISTER_WINDOW(rs), 10);
// Compensate for the C.BEQZ opcode.
displacement -= ASM_HALFWORD_SIZE;
} else {
asm_rv32_opcode_beq(state, rs, ASM_RV32_REG_ZERO, 12);
// Compensate for the BEQ opcode.
displacement -= ASM_WORD_SIZE;
}
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(displacement, &upper, &lower);
asm_rv32_opcode_auipc(state, REG_TEMP2, upper);
asm_rv32_opcode_jalr(state, ASM_RV32_REG_ZERO, REG_TEMP2, lower);
}
void asm_rv32_emit_mov_local_reg(asm_rv32_t *state, mp_uint_t local, mp_uint_t rs) {
mp_uint_t offset = state->locals_stack_offset + (local * ASM_WORD_SIZE);
if (FIT_UNSIGNED(offset >> 2, 6)) {
// c.swsp rs, offset
asm_rv32_opcode_cswsp(state, rs, offset);
return;
}
if (FIT_UNSIGNED(offset, 11)) {
// sw rs, offset(sp)
asm_rv32_opcode_sw(state, rs, ASM_RV32_REG_SP, offset);
return;
}
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(offset, &upper, &lower);
// lui temporary, HI(offset) ; Or c.lui if possible
// c.add temporary, sp
// sw rs, LO(offset)(temporary)
load_upper_immediate(state, REG_TEMP2, upper);
asm_rv32_opcode_cadd(state, REG_TEMP2, ASM_RV32_REG_SP);
asm_rv32_opcode_sw(state, rs, REG_TEMP2, lower);
}
void asm_rv32_emit_mov_reg_local(asm_rv32_t *state, mp_uint_t rd, mp_uint_t local) {
mp_uint_t offset = state->locals_stack_offset + (local * ASM_WORD_SIZE);
if (FIT_UNSIGNED(offset >> 2, 6)) {
// c.lwsp rd, offset
asm_rv32_opcode_clwsp(state, rd, offset);
return;
}
if (FIT_UNSIGNED(offset, 11)) {
// lw rd, offset(sp)
asm_rv32_opcode_lw(state, rd, ASM_RV32_REG_SP, offset);
return;
}
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(offset, &upper, &lower);
// lui rd, HI(offset) ; Or c.lui if possible
// c.add rd, sp
// lw rd, LO(offset)(rd)
load_upper_immediate(state, rd, upper);
asm_rv32_opcode_cadd(state, rd, ASM_RV32_REG_SP);
asm_rv32_opcode_lw(state, rd, rd, lower);
}
void asm_rv32_emit_mov_reg_local_addr(asm_rv32_t *state, mp_uint_t rd, mp_uint_t local) {
mp_uint_t offset = state->locals_stack_offset + (local * ASM_WORD_SIZE);
if (FIT_UNSIGNED(offset, 10) && offset != 0 && RV32_IS_IN_C_REGISTER_WINDOW(rd)) {
// c.addi4spn rd', offset
asm_rv32_opcode_caddi4spn(state, RV32_MAP_IN_C_REGISTER_WINDOW(rd), offset);
return;
}
if (FIT_UNSIGNED(offset, 11)) {
// addi rd, sp, offset
asm_rv32_opcode_addi(state, rd, ASM_RV32_REG_SP, offset);
return;
}
// li rd, offset
// c.add rd, sp
load_full_immediate(state, rd, offset);
asm_rv32_opcode_cadd(state, rd, ASM_RV32_REG_SP);
}
static const uint8_t RV32_LOAD_OPCODE_TABLE[3] = {
0x04, 0x05, 0x02
};
void asm_rv32_emit_load_reg_reg_offset(asm_rv32_t *state, mp_uint_t rd, mp_uint_t rs, int32_t offset, mp_uint_t operation_size) {
assert(operation_size <= 2 && "Operation size value out of range.");
int32_t scaled_offset = offset << operation_size;
if (scaled_offset >= 0 && operation_size == 2 && RV32_IS_IN_C_REGISTER_WINDOW(rd) && RV32_IS_IN_C_REGISTER_WINDOW(rs) && MP_FIT_UNSIGNED(6, scaled_offset)) {
// c.lw rd', offset(rs')
asm_rv32_opcode_clw(state, RV32_MAP_IN_C_REGISTER_WINDOW(rd), RV32_MAP_IN_C_REGISTER_WINDOW(rs), scaled_offset);
return;
}
if (MP_FIT_SIGNED(12, scaled_offset)) {
// lbu|lhu|lw rd, offset(rs)
asm_rv32_emit_word_opcode(state, RV32_ENCODE_TYPE_I(0x03, RV32_LOAD_OPCODE_TABLE[operation_size], rd, rs, scaled_offset));
return;
}
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(scaled_offset, &upper, &lower);
// lui rd, HI(offset) ; Or c.lui if possible
// c.add rd, rs
// lbu|lhu|lw rd, LO(offset)(rd)
load_upper_immediate(state, rd, upper);
asm_rv32_opcode_cadd(state, rd, rs);
asm_rv32_emit_word_opcode(state, RV32_ENCODE_TYPE_I(0x03, RV32_LOAD_OPCODE_TABLE[operation_size], rd, rd, lower));
}
void asm_rv32_emit_jump(asm_rv32_t *state, mp_uint_t label) {
ptrdiff_t displacement = 0;
bool can_emit_short_jump = calculate_displacement_for_label(state, label, &displacement);
if (can_emit_short_jump && FIT_SIGNED(displacement, 12)) {
// c.j displacement
asm_rv32_opcode_cj(state, displacement);
return;
}
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(displacement, &upper, &lower);
// auipc temporary, HI(displacement)
// jalr zero, temporary, LO(displacement)
asm_rv32_opcode_auipc(state, REG_TEMP2, upper);
asm_rv32_opcode_jalr(state, ASM_RV32_REG_ZERO, REG_TEMP2, lower);
}
void asm_rv32_emit_store_reg_reg_offset(asm_rv32_t *state, mp_uint_t rd, mp_uint_t rs, int32_t offset, mp_uint_t operation_size) {
assert(operation_size <= 2 && "Operation size value out of range.");
int32_t scaled_offset = offset << operation_size;
if (scaled_offset >= 0 && operation_size == 2 && RV32_IS_IN_C_REGISTER_WINDOW(rd) && RV32_IS_IN_C_REGISTER_WINDOW(rs) && MP_FIT_UNSIGNED(6, scaled_offset)) {
// c.sw rd', offset(rs')
asm_rv32_opcode_csw(state, RV32_MAP_IN_C_REGISTER_WINDOW(rd), RV32_MAP_IN_C_REGISTER_WINDOW(rs), scaled_offset);
return;
}
if (MP_FIT_SIGNED(12, scaled_offset)) {
// sb|sh|sw rd, offset(rs)
asm_rv32_emit_word_opcode(state, RV32_ENCODE_TYPE_S(0x23, operation_size, rs, rd, scaled_offset));
return;
}
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(scaled_offset, &upper, &lower);
// lui temporary, HI(offset) ; Or c.lui if possible
// c.add temporary, rs
// sb|sh|sw rd, LO(offset)(temporary)
load_upper_immediate(state, REG_TEMP2, upper);
asm_rv32_opcode_cadd(state, REG_TEMP2, rs);
asm_rv32_emit_word_opcode(state, RV32_ENCODE_TYPE_S(0x23, operation_size, REG_TEMP2, rd, lower));
}
void asm_rv32_emit_mov_reg_pcrel(asm_rv32_t *state, mp_uint_t rd, mp_uint_t label) {
ptrdiff_t displacement = (ptrdiff_t)(state->base.label_offsets[label] - state->base.code_offset);
mp_uint_t upper = 0;
mp_uint_t lower = 0;
split_immediate(displacement, &upper, &lower);
// auipc rd, HI(relative)
// addi rd, rd, LO(relative)
asm_rv32_opcode_auipc(state, rd, upper);
asm_rv32_opcode_addi(state, rd, rd, lower);
}
void asm_rv32_emit_optimised_xor(asm_rv32_t *state, mp_uint_t rd, mp_uint_t rs) {
if (rs == rd) {
// c.li rd, 0
asm_rv32_opcode_cli(state, rd, 0);
return;
}
// xor rd, rd, rs
asm_rv32_opcode_xor(state, rd, rd, rs);
}
void asm_rv32_meta_comparison_eq(asm_rv32_t *state, mp_uint_t rs1, mp_uint_t rs2, mp_uint_t rd) {
// c.li rd, 1 ;
// beq rs1, rs2, 6 ; PC + 0
// c.li rd, 0 ; PC + 4
// ... ; PC + 6
asm_rv32_opcode_cli(state, rd, 1);
asm_rv32_opcode_beq(state, rs1, rs2, 6);
asm_rv32_opcode_cli(state, rd, 0);
}
void asm_rv32_meta_comparison_ne(asm_rv32_t *state, mp_uint_t rs1, mp_uint_t rs2, mp_uint_t rd) {
// sub rd, rs1, rs2
// sltu rd, zero, rd
asm_rv32_opcode_sub(state, rd, rs1, rs2);
asm_rv32_opcode_sltu(state, rd, ASM_RV32_REG_ZERO, rd);
}
void asm_rv32_meta_comparison_lt(asm_rv32_t *state, mp_uint_t rs1, mp_uint_t rs2, mp_uint_t rd, bool unsigned_comparison) {
// slt(u) rd, rs1, rs2
if (unsigned_comparison) {
asm_rv32_opcode_sltu(state, rd, rs1, rs2);
} else {
asm_rv32_opcode_slt(state, rd, rs1, rs2);
}
}
void asm_rv32_meta_comparison_le(asm_rv32_t *state, mp_uint_t rs1, mp_uint_t rs2, mp_uint_t rd, bool unsigned_comparison) {
// c.li rd, 1 ;
// beq rs1, rs2, 8 ; PC + 0
// slt(u) rd, rs1, rs2 ; PC + 4
// ... ; PC + 8
asm_rv32_opcode_cli(state, rd, 1);
asm_rv32_opcode_beq(state, rs1, rs2, 8);
if (unsigned_comparison) {
asm_rv32_opcode_sltu(state, rd, rs1, rs2);
} else {
asm_rv32_opcode_slt(state, rd, rs1, rs2);
}
}
#endif // MICROPY_EMIT_RV32