mirror of
https://github.com/micropython/micropython.git
synced 2025-07-21 21:11:12 +02:00
If the interrupt is not freed but merely disabled, instead of reallocating it every time the timer is enabled again we can instead just re-enable it. That means we're no longer setting the handler every time, and we need to ensure it does not change. Doing so by adding an additional wrapper function does not only solve that problem, it also allows us to remove some code duplication and simplify how machine_uart uses the timer. Signed-off-by: Daniël van de Giessen <daniel@dvdgiessen.nl>
702 lines
25 KiB
C
702 lines
25 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2016-2023 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// This file is never compiled standalone, it's included directly from
|
|
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
|
|
|
|
#include "driver/uart.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/queue.h"
|
|
#include "esp_task.h"
|
|
#include "shared/runtime/mpirq.h"
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/stream.h"
|
|
#include "py/mperrno.h"
|
|
#include "py/mphal.h"
|
|
#include "uart.h"
|
|
#include "machine_timer.h"
|
|
|
|
#if SOC_UART_SUPPORT_XTAL_CLK
|
|
// Works independently of APB frequency, on ESP32C3, ESP32S3.
|
|
#define UART_SOURCE_CLK UART_SCLK_XTAL
|
|
#else
|
|
#define UART_SOURCE_CLK UART_SCLK_DEFAULT
|
|
#endif
|
|
|
|
#define UART_INV_TX UART_SIGNAL_TXD_INV
|
|
#define UART_INV_RX UART_SIGNAL_RXD_INV
|
|
#define UART_INV_RTS UART_SIGNAL_RTS_INV
|
|
#define UART_INV_CTS UART_SIGNAL_CTS_INV
|
|
|
|
#define UART_INV_MASK (UART_INV_TX | UART_INV_RX | UART_INV_RTS | UART_INV_CTS)
|
|
#define UART_IRQ_RX (1 << UART_DATA)
|
|
#define UART_IRQ_RXIDLE (0x1000)
|
|
#define UART_IRQ_BREAK (1 << UART_BREAK)
|
|
#define MP_UART_ALLOWED_FLAGS (UART_IRQ_RX | UART_IRQ_RXIDLE | UART_IRQ_BREAK)
|
|
#define RXIDLE_TIMER_MIN (5000) // 500 us
|
|
#define UART_QUEUE_SIZE (3)
|
|
|
|
enum {
|
|
RXIDLE_INACTIVE,
|
|
RXIDLE_STANDBY,
|
|
RXIDLE_ARMED,
|
|
RXIDLE_ALERT,
|
|
};
|
|
|
|
typedef struct _machine_uart_obj_t {
|
|
mp_obj_base_t base;
|
|
uart_port_t uart_num;
|
|
uart_hw_flowcontrol_t flowcontrol;
|
|
uint8_t bits;
|
|
uint8_t parity;
|
|
uint8_t stop;
|
|
gpio_num_t tx;
|
|
gpio_num_t rx;
|
|
gpio_num_t rts;
|
|
gpio_num_t cts;
|
|
uint16_t txbuf;
|
|
uint16_t rxbuf;
|
|
uint16_t timeout; // timeout waiting for first char (in ms)
|
|
uint16_t timeout_char; // timeout waiting between chars (in ms)
|
|
uint32_t invert; // lines to invert
|
|
TaskHandle_t uart_event_task;
|
|
QueueHandle_t uart_queue;
|
|
uint16_t mp_irq_trigger; // user IRQ trigger mask
|
|
uint16_t mp_irq_flags; // user IRQ active IRQ flags
|
|
mp_irq_obj_t *mp_irq_obj; // user IRQ object
|
|
machine_timer_obj_t *rxidle_timer;
|
|
uint8_t rxidle_state;
|
|
uint16_t rxidle_period;
|
|
} machine_uart_obj_t;
|
|
|
|
static const char *_parity_name[] = {"None", "1", "0"};
|
|
|
|
/******************************************************************************/
|
|
// MicroPython bindings for UART
|
|
|
|
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
|
|
{ MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INV_TX) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INV_RX) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_INV_RTS), MP_ROM_INT(UART_INV_RTS) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_INV_CTS), MP_ROM_INT(UART_INV_CTS) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HW_FLOWCTRL_RTS) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HW_FLOWCTRL_CTS) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_IRQ_RX), MP_ROM_INT(UART_IRQ_RX) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \
|
|
{ MP_ROM_QSTR(MP_QSTR_IRQ_BREAK), MP_ROM_INT(UART_IRQ_BREAK) }, \
|
|
|
|
static void uart_timer_callback(machine_timer_obj_t *timer) {
|
|
// The UART object is referred here by the callback field.
|
|
machine_uart_obj_t *self = (machine_uart_obj_t *)timer->callback;
|
|
if (self->rxidle_state == RXIDLE_ALERT) {
|
|
// At the first call, just switch the state
|
|
self->rxidle_state = RXIDLE_ARMED;
|
|
} else if (self->rxidle_state == RXIDLE_ARMED) {
|
|
// At the second call, run the irq callback and stop the timer
|
|
self->rxidle_state = RXIDLE_STANDBY;
|
|
self->mp_irq_flags = UART_IRQ_RXIDLE;
|
|
mp_irq_handler(self->mp_irq_obj);
|
|
mp_hal_wake_main_task_from_isr();
|
|
machine_timer_disable(self->rxidle_timer);
|
|
}
|
|
}
|
|
|
|
static void uart_event_task(void *self_in) {
|
|
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
uart_event_t event;
|
|
for (;;) {
|
|
// Waiting for an UART event.
|
|
if (xQueueReceive(self->uart_queue, (void *)&event, (TickType_t)portMAX_DELAY)) {
|
|
uint16_t mp_irq_flags = 0;
|
|
switch (event.type) {
|
|
// Event of UART receiving data
|
|
case UART_DATA:
|
|
if (self->mp_irq_trigger & UART_IRQ_RXIDLE) {
|
|
if (self->rxidle_state != RXIDLE_INACTIVE) {
|
|
if (self->rxidle_state == RXIDLE_STANDBY) {
|
|
machine_timer_enable(self->rxidle_timer);
|
|
}
|
|
}
|
|
self->rxidle_state = RXIDLE_ALERT;
|
|
}
|
|
mp_irq_flags |= UART_IRQ_RX;
|
|
break;
|
|
case UART_BREAK:
|
|
mp_irq_flags |= UART_IRQ_BREAK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
// Check the flags to see if the user handler should be called
|
|
if (self->mp_irq_trigger & mp_irq_flags) {
|
|
self->mp_irq_flags = mp_irq_flags;
|
|
mp_irq_handler(self->mp_irq_obj);
|
|
mp_hal_wake_main_task_from_isr();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void uart_event_task_create(machine_uart_obj_t *self) {
|
|
if (xTaskCreatePinnedToCore(uart_event_task, "uart_event_task", 2048, self,
|
|
ESP_TASKD_EVENT_PRIO, (TaskHandle_t *)&self->uart_event_task, MP_TASK_COREID) != pdPASS) {
|
|
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create UART event task"));
|
|
}
|
|
}
|
|
|
|
static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
uint32_t baudrate;
|
|
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
|
|
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d, rts=%d, cts=%d, txbuf=%u, rxbuf=%u, timeout=%u, timeout_char=%u, irq=%d",
|
|
self->uart_num, baudrate, self->bits, _parity_name[self->parity],
|
|
self->stop, self->tx, self->rx, self->rts, self->cts, self->txbuf, self->rxbuf, self->timeout, self->timeout_char, self->mp_irq_trigger);
|
|
if (self->invert) {
|
|
mp_printf(print, ", invert=");
|
|
uint32_t invert_mask = self->invert;
|
|
if (invert_mask & UART_INV_TX) {
|
|
mp_printf(print, "INV_TX");
|
|
invert_mask &= ~UART_INV_TX;
|
|
if (invert_mask) {
|
|
mp_printf(print, "|");
|
|
}
|
|
}
|
|
if (invert_mask & UART_INV_RX) {
|
|
mp_printf(print, "INV_RX");
|
|
invert_mask &= ~UART_INV_RX;
|
|
if (invert_mask) {
|
|
mp_printf(print, "|");
|
|
}
|
|
}
|
|
if (invert_mask & UART_INV_RTS) {
|
|
mp_printf(print, "INV_RTS");
|
|
invert_mask &= ~UART_INV_RTS;
|
|
if (invert_mask) {
|
|
mp_printf(print, "|");
|
|
}
|
|
}
|
|
if (invert_mask & UART_INV_CTS) {
|
|
mp_printf(print, "INV_CTS");
|
|
}
|
|
}
|
|
if (self->flowcontrol) {
|
|
mp_printf(print, ", flow=");
|
|
uint32_t flow_mask = self->flowcontrol;
|
|
if (flow_mask & UART_HW_FLOWCTRL_RTS) {
|
|
mp_printf(print, "RTS");
|
|
flow_mask &= ~UART_HW_FLOWCTRL_RTS;
|
|
if (flow_mask) {
|
|
mp_printf(print, "|");
|
|
}
|
|
}
|
|
if (flow_mask & UART_HW_FLOWCTRL_CTS) {
|
|
mp_printf(print, "CTS");
|
|
}
|
|
}
|
|
mp_printf(print, ")");
|
|
}
|
|
|
|
static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_rts, ARG_cts, ARG_txbuf, ARG_rxbuf, ARG_timeout, ARG_timeout_char, ARG_invert, ARG_flow };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 0} },
|
|
{ MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
// wait for all data to be transmitted before changing settings
|
|
uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000));
|
|
|
|
if ((args[ARG_txbuf].u_int >= 0 && args[ARG_txbuf].u_int != self->txbuf) || (args[ARG_rxbuf].u_int >= 0 && args[ARG_rxbuf].u_int != self->rxbuf)) {
|
|
// must reinitialise driver to change the tx/rx buffer size
|
|
#if MICROPY_HW_ENABLE_UART_REPL
|
|
if (self->uart_num == MICROPY_HW_UART_REPL) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("UART buffer size is fixed"));
|
|
}
|
|
#endif
|
|
|
|
if (args[ARG_txbuf].u_int >= 0) {
|
|
self->txbuf = args[ARG_txbuf].u_int;
|
|
}
|
|
if (args[ARG_rxbuf].u_int >= 0) {
|
|
self->rxbuf = args[ARG_rxbuf].u_int;
|
|
}
|
|
uart_config_t uartcfg = {
|
|
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
|
|
.rx_flow_ctrl_thresh = 0,
|
|
.source_clk = UART_SOURCE_CLK,
|
|
};
|
|
uint32_t baudrate;
|
|
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
|
|
uartcfg.baud_rate = baudrate;
|
|
check_esp_err(uart_get_word_length(self->uart_num, &uartcfg.data_bits));
|
|
check_esp_err(uart_get_parity(self->uart_num, &uartcfg.parity));
|
|
check_esp_err(uart_get_stop_bits(self->uart_num, &uartcfg.stop_bits));
|
|
mp_machine_uart_deinit(self);
|
|
check_esp_err(uart_param_config(self->uart_num, &uartcfg));
|
|
check_esp_err(uart_driver_install(self->uart_num, self->rxbuf, self->txbuf, UART_QUEUE_SIZE, &self->uart_queue, 0));
|
|
if (self->mp_irq_obj != NULL && self->mp_irq_obj->handler != mp_const_none) {
|
|
uart_event_task_create(self);
|
|
}
|
|
}
|
|
|
|
// set baudrate
|
|
uint32_t baudrate = 115200;
|
|
if (args[ARG_baudrate].u_int > 0) {
|
|
check_esp_err(uart_set_baudrate(self->uart_num, args[ARG_baudrate].u_int));
|
|
}
|
|
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
|
|
|
|
if (args[ARG_tx].u_obj != MP_OBJ_NULL) {
|
|
self->tx = machine_pin_get_id(args[ARG_tx].u_obj);
|
|
}
|
|
|
|
if (args[ARG_rx].u_obj != MP_OBJ_NULL) {
|
|
self->rx = machine_pin_get_id(args[ARG_rx].u_obj);
|
|
}
|
|
|
|
if (args[ARG_rts].u_obj != MP_OBJ_NULL) {
|
|
self->rts = machine_pin_get_id(args[ARG_rts].u_obj);
|
|
}
|
|
|
|
if (args[ARG_cts].u_obj != MP_OBJ_NULL) {
|
|
self->cts = machine_pin_get_id(args[ARG_cts].u_obj);
|
|
}
|
|
check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts));
|
|
|
|
// set data bits
|
|
switch (args[ARG_bits].u_int) {
|
|
case 0:
|
|
break;
|
|
case 5:
|
|
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_5_BITS));
|
|
self->bits = 5;
|
|
break;
|
|
case 6:
|
|
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_6_BITS));
|
|
self->bits = 6;
|
|
break;
|
|
case 7:
|
|
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_7_BITS));
|
|
self->bits = 7;
|
|
break;
|
|
case 8:
|
|
check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_8_BITS));
|
|
self->bits = 8;
|
|
break;
|
|
default:
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid data bits"));
|
|
break;
|
|
}
|
|
|
|
// set parity
|
|
if (args[ARG_parity].u_obj != MP_OBJ_NULL) {
|
|
if (args[ARG_parity].u_obj == mp_const_none) {
|
|
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_DISABLE));
|
|
self->parity = 0;
|
|
} else {
|
|
mp_int_t parity = mp_obj_get_int(args[ARG_parity].u_obj);
|
|
if (parity & 1) {
|
|
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_ODD));
|
|
self->parity = 1;
|
|
} else {
|
|
check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_EVEN));
|
|
self->parity = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// set stop bits
|
|
switch (args[ARG_stop].u_int) {
|
|
// FIXME: ESP32 also supports 1.5 stop bits
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_1));
|
|
self->stop = 1;
|
|
break;
|
|
case 2:
|
|
check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_2));
|
|
self->stop = 2;
|
|
break;
|
|
default:
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid stop bits"));
|
|
break;
|
|
}
|
|
|
|
// set timeout
|
|
if (args[ARG_timeout].u_int != -1) {
|
|
self->timeout = args[ARG_timeout].u_int;
|
|
}
|
|
|
|
// set timeout_char
|
|
if (args[ARG_timeout_char].u_int != -1) {
|
|
self->timeout_char = args[ARG_timeout_char].u_int;
|
|
}
|
|
// make sure it is at least as long as a whole character (12 bits here)
|
|
uint32_t char_time_ms = 12000 / baudrate + 1;
|
|
uint32_t rx_timeout = self->timeout_char / char_time_ms;
|
|
if (rx_timeout < 1) {
|
|
check_esp_err(uart_set_rx_full_threshold(self->uart_num, 1));
|
|
check_esp_err(uart_set_rx_timeout(self->uart_num, 1));
|
|
} else {
|
|
check_esp_err(uart_set_rx_timeout(self->uart_num, rx_timeout));
|
|
}
|
|
|
|
// set line inversion
|
|
if (args[ARG_invert].u_int != -1) {
|
|
if (args[ARG_invert].u_int & ~UART_INV_MASK) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid inversion mask"));
|
|
}
|
|
self->invert = args[ARG_invert].u_int;
|
|
}
|
|
check_esp_err(uart_set_line_inverse(self->uart_num, self->invert));
|
|
|
|
// set hardware flow control
|
|
if (args[ARG_flow].u_int != -1) {
|
|
if (args[ARG_flow].u_int & ~UART_HW_FLOWCTRL_CTS_RTS) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid flow control mask"));
|
|
}
|
|
self->flowcontrol = args[ARG_flow].u_int;
|
|
}
|
|
uint8_t uart_fifo_len = UART_HW_FIFO_LEN(self->uart_num);
|
|
check_esp_err(uart_set_hw_flow_ctrl(self->uart_num, self->flowcontrol, uart_fifo_len - uart_fifo_len / 4));
|
|
}
|
|
|
|
static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
|
|
|
// get uart id
|
|
mp_int_t uart_num = mp_obj_get_int(args[0]);
|
|
if (uart_num < 0 || uart_num >= UART_NUM_MAX) {
|
|
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) does not exist"), uart_num);
|
|
}
|
|
|
|
// Defaults
|
|
uart_config_t uartcfg = {
|
|
.baud_rate = 115200,
|
|
.data_bits = UART_DATA_8_BITS,
|
|
.parity = UART_PARITY_DISABLE,
|
|
.stop_bits = UART_STOP_BITS_1,
|
|
.flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
|
|
.rx_flow_ctrl_thresh = 0,
|
|
.source_clk = UART_SOURCE_CLK,
|
|
};
|
|
|
|
// create instance
|
|
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
|
|
self->uart_num = uart_num;
|
|
self->bits = 8;
|
|
self->parity = 0;
|
|
self->stop = 1;
|
|
self->rts = UART_PIN_NO_CHANGE;
|
|
self->cts = UART_PIN_NO_CHANGE;
|
|
self->txbuf = 256;
|
|
self->rxbuf = 256; // IDF minimum
|
|
self->timeout = 0;
|
|
self->timeout_char = 0;
|
|
self->invert = 0;
|
|
self->flowcontrol = 0;
|
|
self->uart_event_task = NULL;
|
|
self->uart_queue = NULL;
|
|
self->rxidle_state = RXIDLE_INACTIVE;
|
|
|
|
switch (uart_num) {
|
|
case UART_NUM_0:
|
|
self->rx = UART_PIN_NO_CHANGE; // GPIO 3
|
|
self->tx = UART_PIN_NO_CHANGE; // GPIO 1
|
|
break;
|
|
case UART_NUM_1:
|
|
self->rx = 9;
|
|
self->tx = 10;
|
|
break;
|
|
#if SOC_UART_HP_NUM > 2
|
|
case UART_NUM_2:
|
|
self->rx = 16;
|
|
self->tx = 17;
|
|
break;
|
|
#endif
|
|
#if SOC_UART_LP_NUM >= 1
|
|
case LP_UART_NUM_0:
|
|
self->rx = 4;
|
|
self->tx = 5;
|
|
#endif
|
|
|
|
}
|
|
|
|
#if MICROPY_HW_ENABLE_UART_REPL
|
|
// Only reset the driver if it's not the REPL UART.
|
|
if (uart_num != MICROPY_HW_UART_REPL)
|
|
#endif
|
|
{
|
|
// Remove any existing configuration
|
|
check_esp_err(uart_driver_delete(self->uart_num));
|
|
self->uart_queue = NULL;
|
|
|
|
// init the peripheral
|
|
// Setup
|
|
check_esp_err(uart_param_config(self->uart_num, &uartcfg));
|
|
|
|
check_esp_err(uart_driver_install(uart_num, self->rxbuf, self->txbuf, UART_QUEUE_SIZE, &self->uart_queue, 0));
|
|
}
|
|
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
|
|
mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args);
|
|
|
|
// Make sure pins are connected.
|
|
check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts));
|
|
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
static void mp_machine_uart_deinit(machine_uart_obj_t *self) {
|
|
if (self->uart_event_task != NULL) {
|
|
vTaskDelete(self->uart_event_task);
|
|
self->uart_event_task = NULL;
|
|
}
|
|
check_esp_err(uart_driver_delete(self->uart_num));
|
|
self->uart_queue = NULL;
|
|
}
|
|
|
|
static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
|
|
size_t rxbufsize;
|
|
check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize));
|
|
return rxbufsize;
|
|
}
|
|
|
|
static bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
|
|
return uart_wait_tx_done(self->uart_num, 0) == ESP_OK;
|
|
}
|
|
|
|
static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
|
|
// Save settings
|
|
uint32_t baudrate;
|
|
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
|
|
|
|
// Synthesise the break condition by reducing the baud rate,
|
|
// and cater for the worst case of 5 data bits, no parity.
|
|
check_esp_err(uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)));
|
|
check_esp_err(uart_set_baudrate(self->uart_num, baudrate * 6 / 15));
|
|
char buf[1] = {0};
|
|
uart_write_bytes(self->uart_num, buf, 1);
|
|
check_esp_err(uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)));
|
|
|
|
// Restore original setting
|
|
check_esp_err(uart_set_baudrate(self->uart_num, baudrate));
|
|
}
|
|
|
|
// Configure the timer used for IRQ_RXIDLE
|
|
static void uart_irq_configure_timer(machine_uart_obj_t *self, mp_uint_t trigger) {
|
|
|
|
self->rxidle_state = RXIDLE_INACTIVE;
|
|
|
|
if (trigger & UART_IRQ_RXIDLE) {
|
|
// The RXIDLE event is always a soft IRQ.
|
|
self->mp_irq_obj->ishard = false;
|
|
uint32_t baudrate;
|
|
uart_get_baudrate(self->uart_num, &baudrate);
|
|
mp_int_t period = TIMER_SCALE * 20 / baudrate + 1;
|
|
if (period < RXIDLE_TIMER_MIN) {
|
|
period = RXIDLE_TIMER_MIN;
|
|
}
|
|
self->rxidle_period = period;
|
|
self->rxidle_timer->period = period;
|
|
self->rxidle_timer->handler = uart_timer_callback;
|
|
// The Python callback is not used. So use this
|
|
// data field to hold a reference to the UART object.
|
|
self->rxidle_timer->callback = self;
|
|
self->rxidle_timer->repeat = true;
|
|
self->rxidle_state = RXIDLE_STANDBY;
|
|
}
|
|
}
|
|
|
|
static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
|
|
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
uart_irq_configure_timer(self, new_trigger);
|
|
self->mp_irq_trigger = new_trigger;
|
|
return 0;
|
|
}
|
|
|
|
static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
|
|
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
if (info_type == MP_IRQ_INFO_FLAGS) {
|
|
return self->mp_irq_flags;
|
|
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
|
|
return self->mp_irq_trigger;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const mp_irq_methods_t uart_irq_methods = {
|
|
.trigger = uart_irq_trigger,
|
|
.info = uart_irq_info,
|
|
};
|
|
|
|
static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) {
|
|
#if MICROPY_HW_ENABLE_UART_REPL
|
|
if (self->uart_num == MICROPY_HW_UART_REPL) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("UART does not support IRQs"));
|
|
}
|
|
#endif
|
|
|
|
if (self->mp_irq_obj == NULL) {
|
|
self->mp_irq_trigger = 0;
|
|
self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self));
|
|
}
|
|
|
|
if (any_args) {
|
|
// Check the handler
|
|
mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj;
|
|
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable"));
|
|
}
|
|
|
|
// Check the trigger
|
|
mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int;
|
|
mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS;
|
|
if (trigger != 0 && not_supported) {
|
|
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%04x unsupported"), not_supported);
|
|
}
|
|
|
|
self->mp_irq_obj->handler = handler;
|
|
if (args[MP_IRQ_ARG_INIT_hard].u_bool) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("hard IRQ is not supported"));
|
|
}
|
|
self->mp_irq_obj->ishard = false;
|
|
self->mp_irq_trigger = trigger;
|
|
self->rxidle_timer = machine_timer_create(0);
|
|
uart_irq_configure_timer(self, trigger);
|
|
|
|
// Start a task for handling events
|
|
if (handler != mp_const_none && self->uart_event_task == NULL && self->uart_queue != NULL) {
|
|
uart_event_task_create(self);
|
|
} else if (handler == mp_const_none && self->uart_event_task != NULL) {
|
|
vTaskDelete(self->uart_event_task);
|
|
self->uart_event_task = NULL;
|
|
}
|
|
}
|
|
|
|
return self->mp_irq_obj;
|
|
}
|
|
|
|
static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
|
|
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
// make sure we want at least 1 char
|
|
if (size == 0) {
|
|
return 0;
|
|
}
|
|
|
|
TickType_t time_to_wait;
|
|
if (self->timeout == 0) {
|
|
time_to_wait = 0;
|
|
} else {
|
|
time_to_wait = pdMS_TO_TICKS(self->timeout);
|
|
}
|
|
|
|
bool release_gil = time_to_wait > 0;
|
|
if (release_gil) {
|
|
MP_THREAD_GIL_EXIT();
|
|
}
|
|
|
|
int bytes_read = uart_read_bytes(self->uart_num, buf_in, size, time_to_wait);
|
|
|
|
if (release_gil) {
|
|
MP_THREAD_GIL_ENTER();
|
|
}
|
|
|
|
if (bytes_read <= 0) {
|
|
*errcode = MP_EAGAIN;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
return bytes_read;
|
|
}
|
|
|
|
static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
|
|
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
int bytes_written = uart_write_bytes(self->uart_num, buf_in, size);
|
|
|
|
if (bytes_written < 0) {
|
|
*errcode = MP_EAGAIN;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
// return number of bytes written
|
|
return bytes_written;
|
|
}
|
|
|
|
static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
|
|
machine_uart_obj_t *self = self_in;
|
|
mp_uint_t ret;
|
|
if (request == MP_STREAM_POLL) {
|
|
mp_uint_t flags = arg;
|
|
ret = 0;
|
|
size_t rxbufsize;
|
|
check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize));
|
|
if ((flags & MP_STREAM_POLL_RD) && rxbufsize > 0) {
|
|
ret |= MP_STREAM_POLL_RD;
|
|
}
|
|
if ((flags & MP_STREAM_POLL_WR) && 1) { // FIXME: uart_tx_any_room(self->uart_num)
|
|
ret |= MP_STREAM_POLL_WR;
|
|
}
|
|
} else if (request == MP_STREAM_FLUSH) {
|
|
// The timeout is estimated using the buffer size and the baudrate.
|
|
// Take the worst case assumptions at 13 bit symbol size times 2.
|
|
uint32_t baudrate;
|
|
check_esp_err(uart_get_baudrate(self->uart_num, &baudrate));
|
|
uint32_t timeout = (3 + self->txbuf) * 13000 * 2 / baudrate;
|
|
if (uart_wait_tx_done(self->uart_num, timeout) == ESP_OK) {
|
|
ret = 0;
|
|
} else {
|
|
*errcode = MP_ETIMEDOUT;
|
|
ret = MP_STREAM_ERROR;
|
|
}
|
|
} else {
|
|
*errcode = MP_EINVAL;
|
|
ret = MP_STREAM_ERROR;
|
|
}
|
|
return ret;
|
|
}
|