Files
micropython/py/persistentcode.c
Damien George 3d7edbd9ab py/persistentcode: Allow a port a custom commit function and track data.
Allows both MICROPY_PERSISTENT_CODE_TRACK_FUN_DATA and MP_PLAT_COMMIT_EXEC
to be enabled at the same time.

Signed-off-by: Damien George <damien@micropython.org>
2025-05-21 12:53:14 +10:00

915 lines
30 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2020 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/reader.h"
#include "py/nativeglue.h"
#include "py/persistentcode.h"
#include "py/bc0.h"
#include "py/objstr.h"
#include "py/mpthread.h"
#if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE
#include "py/smallint.h"
// makeqstrdata.py has a fixed list of qstrs at the start that we can assume
// are available with know indices on all MicroPython implementations, and
// avoid needing to duplicate the string data in the .mpy file. This is the
// last one in that list (anything with a qstr less than or equal to this is
// assumed to be in the list).
#define QSTR_LAST_STATIC MP_QSTR_zip
#if MICROPY_DYNAMIC_COMPILER
#define MPY_FEATURE_ARCH_DYNAMIC mp_dynamic_compiler.native_arch
#else
#define MPY_FEATURE_ARCH_DYNAMIC MPY_FEATURE_ARCH
#endif
typedef struct _bytecode_prelude_t {
uint n_state;
uint n_exc_stack;
uint scope_flags;
uint n_pos_args;
uint n_kwonly_args;
uint n_def_pos_args;
uint code_info_size;
} bytecode_prelude_t;
#endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE
#if MICROPY_PERSISTENT_CODE_LOAD
#include "py/parsenum.h"
static int read_byte(mp_reader_t *reader);
static size_t read_uint(mp_reader_t *reader);
#if MICROPY_EMIT_MACHINE_CODE
#if MICROPY_PERSISTENT_CODE_TRACK_FUN_DATA || MICROPY_PERSISTENT_CODE_TRACK_BSS_RODATA
// An mp_obj_list_t that tracks native text/BSS/rodata to prevent the GC from reclaiming them.
MP_REGISTER_ROOT_POINTER(mp_obj_t persistent_code_root_pointers);
static void track_root_pointer(void *ptr) {
if (MP_STATE_PORT(persistent_code_root_pointers) == MP_OBJ_NULL) {
MP_STATE_PORT(persistent_code_root_pointers) = mp_obj_new_list(0, NULL);
}
mp_obj_list_append(MP_STATE_PORT(persistent_code_root_pointers), MP_OBJ_FROM_PTR(ptr));
}
#endif
typedef struct _reloc_info_t {
mp_reader_t *reader;
mp_module_context_t *context;
uint8_t *rodata;
uint8_t *bss;
} reloc_info_t;
void mp_native_relocate(void *ri_in, uint8_t *text, uintptr_t reloc_text) {
// Relocate native code
reloc_info_t *ri = ri_in;
uint8_t op;
uintptr_t *addr_to_adjust = NULL;
while ((op = read_byte(ri->reader)) != 0xff) {
if (op & 1) {
// Point to new location to make adjustments
size_t addr = read_uint(ri->reader);
if ((addr & 1) == 0) {
// Point to somewhere in text
addr_to_adjust = &((uintptr_t *)text)[addr >> 1];
} else {
// Point to somewhere in rodata
addr_to_adjust = &((uintptr_t *)ri->rodata)[addr >> 1];
}
}
op >>= 1;
uintptr_t dest;
size_t n = 1;
if (op <= 5) {
if (op & 1) {
// Read in number of adjustments to make
n = read_uint(ri->reader);
}
op >>= 1;
if (op == 0) {
// Destination is text
dest = reloc_text;
} else if (op == 1) {
// Destination is rodata
dest = (uintptr_t)ri->rodata;
} else {
// Destination is bss
dest = (uintptr_t)ri->bss;
}
} else if (op == 6) {
// Destination is qstr_table
dest = (uintptr_t)ri->context->constants.qstr_table;
} else if (op == 7) {
// Destination is obj_table
dest = (uintptr_t)ri->context->constants.obj_table;
} else if (op == 8) {
// Destination is mp_fun_table itself
dest = (uintptr_t)&mp_fun_table;
} else {
// Destination is an entry in mp_fun_table
dest = ((uintptr_t *)&mp_fun_table)[op - 9];
}
while (n--) {
*addr_to_adjust++ += dest;
}
}
}
#endif
static int read_byte(mp_reader_t *reader) {
return reader->readbyte(reader->data);
}
static void read_bytes(mp_reader_t *reader, byte *buf, size_t len) {
while (len-- > 0) {
*buf++ = reader->readbyte(reader->data);
}
}
static size_t read_uint(mp_reader_t *reader) {
size_t unum = 0;
for (;;) {
byte b = reader->readbyte(reader->data);
unum = (unum << 7) | (b & 0x7f);
if ((b & 0x80) == 0) {
break;
}
}
return unum;
}
static qstr load_qstr(mp_reader_t *reader) {
size_t len = read_uint(reader);
if (len & 1) {
// static qstr
return len >> 1;
}
len >>= 1;
#if MICROPY_VFS_ROM
// If possible, create the qstr from the memory-mapped string data.
const uint8_t *memmap = mp_reader_try_read_rom(reader, len + 1);
if (memmap != NULL) {
return qstr_from_strn_static((const char *)memmap, len);
}
#endif
char *str = m_new(char, len);
read_bytes(reader, (byte *)str, len);
read_byte(reader); // read and discard null terminator
qstr qst = qstr_from_strn(str, len);
m_del(char, str, len);
return qst;
}
#if MICROPY_VFS_ROM
// Create a str/bytes object that can forever reference the given data.
static mp_obj_t mp_obj_new_str_static(const mp_obj_type_t *type, const byte *data, size_t len) {
if (type == &mp_type_str) {
qstr q = qstr_find_strn((const char *)data, len);
if (q != MP_QSTRnull) {
return MP_OBJ_NEW_QSTR(q);
}
}
assert(data[len] == '\0');
mp_obj_str_t *o = mp_obj_malloc(mp_obj_str_t, type);
o->len = len;
o->hash = qstr_compute_hash(data, len);
o->data = data;
return MP_OBJ_FROM_PTR(o);
}
#endif
static mp_obj_t load_obj(mp_reader_t *reader) {
byte obj_type = read_byte(reader);
#if MICROPY_EMIT_MACHINE_CODE
if (obj_type == MP_PERSISTENT_OBJ_FUN_TABLE) {
return MP_OBJ_FROM_PTR(&mp_fun_table);
} else
#endif
if (obj_type == MP_PERSISTENT_OBJ_NONE) {
return mp_const_none;
} else if (obj_type == MP_PERSISTENT_OBJ_FALSE) {
return mp_const_false;
} else if (obj_type == MP_PERSISTENT_OBJ_TRUE) {
return mp_const_true;
} else if (obj_type == MP_PERSISTENT_OBJ_ELLIPSIS) {
return MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj);
} else {
size_t len = read_uint(reader);
// Handle empty bytes object, and tuple objects.
if (len == 0 && obj_type == MP_PERSISTENT_OBJ_BYTES) {
read_byte(reader); // skip null terminator
return mp_const_empty_bytes;
} else if (obj_type == MP_PERSISTENT_OBJ_TUPLE) {
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(len, NULL));
for (size_t i = 0; i < len; ++i) {
tuple->items[i] = load_obj(reader);
}
return MP_OBJ_FROM_PTR(tuple);
}
// Read in the object's data, either from ROM or into RAM.
const uint8_t *memmap = NULL;
vstr_t vstr;
#if MICROPY_VFS_ROM
memmap = mp_reader_try_read_rom(reader, len);
vstr.buf = (void *)memmap;
vstr.len = len;
#endif
if (memmap == NULL) {
// Data could not be memory-mapped, so allocate it in RAM and read it in.
vstr_init_len(&vstr, len);
read_bytes(reader, (byte *)vstr.buf, len);
}
// Create and return the object.
if (obj_type == MP_PERSISTENT_OBJ_STR || obj_type == MP_PERSISTENT_OBJ_BYTES) {
read_byte(reader); // skip null terminator (it needs to be there for ROM str objects)
#if MICROPY_VFS_ROM
if (memmap != NULL) {
// Create a str/bytes that references the memory-mapped data.
const mp_obj_type_t *t = obj_type == MP_PERSISTENT_OBJ_STR ? &mp_type_str : &mp_type_bytes;
return mp_obj_new_str_static(t, memmap, len);
}
#endif
if (obj_type == MP_PERSISTENT_OBJ_STR) {
return mp_obj_new_str_from_utf8_vstr(&vstr);
} else {
return mp_obj_new_bytes_from_vstr(&vstr);
}
} else if (obj_type == MP_PERSISTENT_OBJ_INT) {
return mp_parse_num_integer(vstr.buf, vstr.len, 10, NULL);
} else {
assert(obj_type == MP_PERSISTENT_OBJ_FLOAT || obj_type == MP_PERSISTENT_OBJ_COMPLEX);
return mp_parse_num_float(vstr.buf, vstr.len, obj_type == MP_PERSISTENT_OBJ_COMPLEX, NULL);
}
}
}
static mp_raw_code_t *load_raw_code(mp_reader_t *reader, mp_module_context_t *context) {
// Load function kind and data length
size_t kind_len = read_uint(reader);
int kind = (kind_len & 3) + MP_CODE_BYTECODE;
bool has_children = !!(kind_len & 4);
size_t fun_data_len = kind_len >> 3;
#if !MICROPY_EMIT_MACHINE_CODE
if (kind != MP_CODE_BYTECODE) {
mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy file"));
}
#endif
uint8_t *fun_data = NULL;
#if MICROPY_EMIT_MACHINE_CODE
size_t prelude_offset = 0;
mp_uint_t native_scope_flags = 0;
mp_uint_t native_n_pos_args = 0;
mp_uint_t native_type_sig = 0;
#endif
if (kind == MP_CODE_BYTECODE) {
#if MICROPY_VFS_ROM
// Try to reference memory-mapped data for the bytecode.
fun_data = (uint8_t *)mp_reader_try_read_rom(reader, fun_data_len);
#endif
if (fun_data == NULL) {
// Allocate memory for the bytecode.
fun_data = m_new(uint8_t, fun_data_len);
// Load bytecode.
read_bytes(reader, fun_data, fun_data_len);
}
#if MICROPY_EMIT_MACHINE_CODE
} else {
// Allocate memory for native data and load it
size_t fun_alloc;
MP_PLAT_ALLOC_EXEC(fun_data_len, (void **)&fun_data, &fun_alloc);
read_bytes(reader, fun_data, fun_data_len);
if (kind == MP_CODE_NATIVE_PY) {
// Read prelude offset within fun_data, and extract scope flags.
prelude_offset = read_uint(reader);
const byte *ip = fun_data + prelude_offset;
MP_BC_PRELUDE_SIG_DECODE(ip);
native_scope_flags = scope_flags;
} else {
// Load basic scope info for viper and asm.
native_scope_flags = read_uint(reader);
if (kind == MP_CODE_NATIVE_ASM) {
native_n_pos_args = read_uint(reader);
native_type_sig = read_uint(reader);
}
}
#endif
}
size_t n_children = 0;
mp_raw_code_t **children = NULL;
#if MICROPY_EMIT_MACHINE_CODE
// Load optional BSS/rodata for viper.
uint8_t *rodata = NULL;
uint8_t *bss = NULL;
if (kind == MP_CODE_NATIVE_VIPER) {
size_t rodata_size = 0;
if (native_scope_flags & MP_SCOPE_FLAG_VIPERRODATA) {
rodata_size = read_uint(reader);
}
size_t bss_size = 0;
if (native_scope_flags & MP_SCOPE_FLAG_VIPERBSS) {
bss_size = read_uint(reader);
}
if (rodata_size + bss_size != 0) {
bss_size = (uintptr_t)MP_ALIGN(bss_size, sizeof(uintptr_t));
uint8_t *data = m_new0(uint8_t, bss_size + rodata_size);
bss = data;
rodata = bss + bss_size;
if (native_scope_flags & MP_SCOPE_FLAG_VIPERRODATA) {
read_bytes(reader, rodata, rodata_size);
}
#if MICROPY_PERSISTENT_CODE_TRACK_BSS_RODATA
// Track the BSS/rodata memory so it's not reclaimed by the GC.
track_root_pointer(data);
#endif
}
}
#endif
// Load children if any.
if (has_children) {
n_children = read_uint(reader);
children = m_new(mp_raw_code_t *, n_children + (kind == MP_CODE_NATIVE_PY));
for (size_t i = 0; i < n_children; ++i) {
children[i] = load_raw_code(reader, context);
}
}
// Create raw_code and return it
mp_raw_code_t *rc = mp_emit_glue_new_raw_code();
if (kind == MP_CODE_BYTECODE) {
const byte *ip = fun_data;
MP_BC_PRELUDE_SIG_DECODE(ip);
// Assign bytecode to raw code object
mp_emit_glue_assign_bytecode(rc, fun_data,
children,
#if MICROPY_PERSISTENT_CODE_SAVE
fun_data_len,
n_children,
#endif
scope_flags);
#if MICROPY_EMIT_MACHINE_CODE
} else {
const uint8_t *prelude_ptr = NULL;
#if MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE
if (kind == MP_CODE_NATIVE_PY) {
// Executable code cannot be accessed byte-wise on this architecture, so copy
// the prelude to a separate memory region that is byte-wise readable.
void *buf = fun_data + prelude_offset;
size_t n = fun_data_len - prelude_offset;
prelude_ptr = memcpy(m_new(uint8_t, n), buf, n);
}
#endif
// Relocate and commit code to executable address space
reloc_info_t ri = {reader, context, rodata, bss};
#if MICROPY_PERSISTENT_CODE_TRACK_FUN_DATA
if (native_scope_flags & MP_SCOPE_FLAG_VIPERRELOC) {
// Track the function data memory so it's not reclaimed by the GC.
track_root_pointer(fun_data);
}
#endif
#if defined(MP_PLAT_COMMIT_EXEC)
void *opt_ri = (native_scope_flags & MP_SCOPE_FLAG_VIPERRELOC) ? &ri : NULL;
fun_data = MP_PLAT_COMMIT_EXEC(fun_data, fun_data_len, opt_ri);
#else
if (native_scope_flags & MP_SCOPE_FLAG_VIPERRELOC) {
// Do the relocations.
mp_native_relocate(&ri, fun_data, (uintptr_t)fun_data);
}
#endif
if (kind == MP_CODE_NATIVE_PY) {
#if !MICROPY_EMIT_NATIVE_PRELUDE_SEPARATE_FROM_MACHINE_CODE
prelude_ptr = fun_data + prelude_offset;
#endif
if (n_children == 0) {
children = (void *)prelude_ptr;
} else {
children[n_children] = (void *)prelude_ptr;
}
}
// Assign native code to raw code object
mp_emit_glue_assign_native(rc, kind,
fun_data, fun_data_len,
children,
#if MICROPY_PERSISTENT_CODE_SAVE
n_children,
prelude_offset,
#endif
native_scope_flags, native_n_pos_args, native_type_sig
);
#endif
}
return rc;
}
void mp_raw_code_load(mp_reader_t *reader, mp_compiled_module_t *cm) {
// Set exception handler to close the reader if an exception is raised.
MP_DEFINE_NLR_JUMP_CALLBACK_FUNCTION_1(ctx, reader->close, reader->data);
nlr_push_jump_callback(&ctx.callback, mp_call_function_1_from_nlr_jump_callback);
byte header[4];
read_bytes(reader, header, sizeof(header));
byte arch = MPY_FEATURE_DECODE_ARCH(header[2]);
if (header[0] != 'M'
|| header[1] != MPY_VERSION
|| (arch != MP_NATIVE_ARCH_NONE && MPY_FEATURE_DECODE_SUB_VERSION(header[2]) != MPY_SUB_VERSION)
|| header[3] > MP_SMALL_INT_BITS) {
mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy file"));
}
if (MPY_FEATURE_DECODE_ARCH(header[2]) != MP_NATIVE_ARCH_NONE) {
if (!MPY_FEATURE_ARCH_TEST(arch)) {
if (MPY_FEATURE_ARCH_TEST(MP_NATIVE_ARCH_NONE)) {
// On supported ports this can be resolved by enabling feature, eg
// mpconfigboard.h: MICROPY_EMIT_THUMB (1)
mp_raise_ValueError(MP_ERROR_TEXT("native code in .mpy unsupported"));
} else {
mp_raise_ValueError(MP_ERROR_TEXT("incompatible .mpy arch"));
}
}
}
size_t n_qstr = read_uint(reader);
size_t n_obj = read_uint(reader);
mp_module_context_alloc_tables(cm->context, n_qstr, n_obj);
// Load qstrs.
for (size_t i = 0; i < n_qstr; ++i) {
cm->context->constants.qstr_table[i] = load_qstr(reader);
}
// Load constant objects.
for (size_t i = 0; i < n_obj; ++i) {
cm->context->constants.obj_table[i] = load_obj(reader);
}
// Load top-level module.
cm->rc = load_raw_code(reader, cm->context);
#if MICROPY_PERSISTENT_CODE_SAVE
cm->has_native = MPY_FEATURE_DECODE_ARCH(header[2]) != MP_NATIVE_ARCH_NONE;
cm->n_qstr = n_qstr;
cm->n_obj = n_obj;
#endif
// Deregister exception handler and close the reader.
nlr_pop_jump_callback(true);
}
void mp_raw_code_load_mem(const byte *buf, size_t len, mp_compiled_module_t *context) {
mp_reader_t reader;
mp_reader_new_mem(&reader, buf, len, 0);
mp_raw_code_load(&reader, context);
}
#if MICROPY_HAS_FILE_READER
void mp_raw_code_load_file(qstr filename, mp_compiled_module_t *context) {
mp_reader_t reader;
mp_reader_new_file(&reader, filename);
mp_raw_code_load(&reader, context);
}
#endif // MICROPY_HAS_FILE_READER
#endif // MICROPY_PERSISTENT_CODE_LOAD
#if MICROPY_PERSISTENT_CODE_SAVE || MICROPY_PERSISTENT_CODE_SAVE_FUN
#include "py/objstr.h"
static void mp_print_bytes(mp_print_t *print, const byte *data, size_t len) {
print->print_strn(print->data, (const char *)data, len);
}
#define BYTES_FOR_INT ((MP_BYTES_PER_OBJ_WORD * 8 + 6) / 7)
static void mp_print_uint(mp_print_t *print, size_t n) {
byte buf[BYTES_FOR_INT];
byte *p = buf + sizeof(buf);
*--p = n & 0x7f;
n >>= 7;
for (; n != 0; n >>= 7) {
*--p = 0x80 | (n & 0x7f);
}
print->print_strn(print->data, (char *)p, buf + sizeof(buf) - p);
}
static void save_qstr(mp_print_t *print, qstr qst) {
if (qst <= QSTR_LAST_STATIC) {
// encode static qstr
mp_print_uint(print, qst << 1 | 1);
return;
}
size_t len;
const byte *str = qstr_data(qst, &len);
mp_print_uint(print, len << 1);
mp_print_bytes(print, str, len + 1); // +1 to store null terminator
}
static void save_obj(mp_print_t *print, mp_obj_t o) {
#if MICROPY_EMIT_MACHINE_CODE
if (o == MP_OBJ_FROM_PTR(&mp_fun_table)) {
byte obj_type = MP_PERSISTENT_OBJ_FUN_TABLE;
mp_print_bytes(print, &obj_type, 1);
} else
#endif
if (mp_obj_is_str_or_bytes(o)) {
byte obj_type;
if (mp_obj_is_str(o)) {
obj_type = MP_PERSISTENT_OBJ_STR;
} else {
obj_type = MP_PERSISTENT_OBJ_BYTES;
}
size_t len;
const char *str = mp_obj_str_get_data(o, &len);
mp_print_bytes(print, &obj_type, 1);
mp_print_uint(print, len);
mp_print_bytes(print, (const byte *)str, len + 1); // +1 to store null terminator
} else if (o == mp_const_none) {
byte obj_type = MP_PERSISTENT_OBJ_NONE;
mp_print_bytes(print, &obj_type, 1);
} else if (o == mp_const_false) {
byte obj_type = MP_PERSISTENT_OBJ_FALSE;
mp_print_bytes(print, &obj_type, 1);
} else if (o == mp_const_true) {
byte obj_type = MP_PERSISTENT_OBJ_TRUE;
mp_print_bytes(print, &obj_type, 1);
} else if (MP_OBJ_TO_PTR(o) == &mp_const_ellipsis_obj) {
byte obj_type = MP_PERSISTENT_OBJ_ELLIPSIS;
mp_print_bytes(print, &obj_type, 1);
} else if (mp_obj_is_type(o, &mp_type_tuple)) {
size_t len;
mp_obj_t *items;
mp_obj_tuple_get(o, &len, &items);
byte obj_type = MP_PERSISTENT_OBJ_TUPLE;
mp_print_bytes(print, &obj_type, 1);
mp_print_uint(print, len);
for (size_t i = 0; i < len; ++i) {
save_obj(print, items[i]);
}
} else {
// we save numbers using a simplistic text representation
// TODO could be improved
byte obj_type;
if (mp_obj_is_int(o)) {
obj_type = MP_PERSISTENT_OBJ_INT;
#if MICROPY_PY_BUILTINS_COMPLEX
} else if (mp_obj_is_type(o, &mp_type_complex)) {
obj_type = MP_PERSISTENT_OBJ_COMPLEX;
#endif
} else {
assert(mp_obj_is_float(o));
obj_type = MP_PERSISTENT_OBJ_FLOAT;
}
vstr_t vstr;
mp_print_t pr;
vstr_init_print(&vstr, 10, &pr);
mp_obj_print_helper(&pr, o, PRINT_REPR);
mp_print_bytes(print, &obj_type, 1);
mp_print_uint(print, vstr.len);
mp_print_bytes(print, (const byte *)vstr.buf, vstr.len);
vstr_clear(&vstr);
}
}
#endif // MICROPY_PERSISTENT_CODE_SAVE || MICROPY_PERSISTENT_CODE_SAVE_FUN
#if MICROPY_PERSISTENT_CODE_SAVE
static void save_raw_code(mp_print_t *print, const mp_raw_code_t *rc) {
// Save function kind and data length
mp_print_uint(print, (rc->fun_data_len << 3) | ((rc->n_children != 0) << 2) | (rc->kind - MP_CODE_BYTECODE));
// Save function code.
mp_print_bytes(print, rc->fun_data, rc->fun_data_len);
#if MICROPY_EMIT_MACHINE_CODE
if (rc->kind == MP_CODE_NATIVE_PY) {
// Save prelude size
mp_print_uint(print, rc->prelude_offset);
} else if (rc->kind == MP_CODE_NATIVE_VIPER || rc->kind == MP_CODE_NATIVE_ASM) {
// Save basic scope info for viper and asm
// Viper/asm functions don't support generator, variable args, or default keyword args
// so (scope_flags & MP_SCOPE_FLAG_ALL_SIG) for these functions is always 0.
mp_print_uint(print, 0);
#if MICROPY_EMIT_INLINE_ASM
if (rc->kind == MP_CODE_NATIVE_ASM) {
mp_print_uint(print, rc->asm_n_pos_args);
mp_print_uint(print, rc->asm_type_sig);
}
#endif
}
#endif
if (rc->n_children) {
mp_print_uint(print, rc->n_children);
for (size_t i = 0; i < rc->n_children; ++i) {
save_raw_code(print, rc->children[i]);
}
}
}
void mp_raw_code_save(mp_compiled_module_t *cm, mp_print_t *print) {
// header contains:
// byte 'M'
// byte version
// byte native arch (and sub-version if native)
// byte number of bits in a small int
byte header[4] = {
'M',
MPY_VERSION,
cm->has_native ? MPY_FEATURE_ENCODE_SUB_VERSION(MPY_SUB_VERSION) | MPY_FEATURE_ENCODE_ARCH(MPY_FEATURE_ARCH_DYNAMIC) : 0,
#if MICROPY_DYNAMIC_COMPILER
mp_dynamic_compiler.small_int_bits,
#else
MP_SMALL_INT_BITS,
#endif
};
mp_print_bytes(print, header, sizeof(header));
// Number of entries in constant table.
mp_print_uint(print, cm->n_qstr);
mp_print_uint(print, cm->n_obj);
// Save qstrs.
for (size_t i = 0; i < cm->n_qstr; ++i) {
save_qstr(print, cm->context->constants.qstr_table[i]);
}
// Save constant objects.
for (size_t i = 0; i < cm->n_obj; ++i) {
save_obj(print, (mp_obj_t)cm->context->constants.obj_table[i]);
}
// Save outer raw code, which will save all its child raw codes.
save_raw_code(print, cm->rc);
}
#endif // MICROPY_PERSISTENT_CODE_SAVE
#if MICROPY_PERSISTENT_CODE_SAVE_FILE
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
static void fd_print_strn(void *env, const char *str, size_t len) {
int fd = (intptr_t)env;
MP_THREAD_GIL_EXIT();
ssize_t ret = write(fd, str, len);
MP_THREAD_GIL_ENTER();
(void)ret;
}
void mp_raw_code_save_file(mp_compiled_module_t *cm, qstr filename) {
MP_THREAD_GIL_EXIT();
int fd = open(qstr_str(filename), O_WRONLY | O_CREAT | O_TRUNC, 0644);
MP_THREAD_GIL_ENTER();
if (fd < 0) {
mp_raise_OSError_with_filename(errno, qstr_str(filename));
}
mp_print_t fd_print = {(void *)(intptr_t)fd, fd_print_strn};
mp_raw_code_save(cm, &fd_print);
MP_THREAD_GIL_EXIT();
close(fd);
MP_THREAD_GIL_ENTER();
}
#endif // MICROPY_PERSISTENT_CODE_SAVE_FILE
#if MICROPY_PERSISTENT_CODE_SAVE_FUN
#include "py/bc0.h"
#include "py/objfun.h"
#include "py/smallint.h"
#include "py/gc.h"
#define MP_BC_OPCODE_HAS_SIGNED_OFFSET(opcode) (MP_BC_UNWIND_JUMP <= (opcode) && (opcode) <= MP_BC_POP_JUMP_IF_FALSE)
typedef struct _bit_vector_t {
size_t max_bit_set;
size_t alloc;
uintptr_t *bits;
} bit_vector_t;
static void bit_vector_init(bit_vector_t *self) {
self->max_bit_set = 0;
self->alloc = 1;
self->bits = m_new(uintptr_t, self->alloc);
}
static void bit_vector_clear(bit_vector_t *self) {
m_del(uintptr_t, self->bits, self->alloc);
}
static bool bit_vector_is_set(bit_vector_t *self, size_t index) {
const size_t bits_size = sizeof(*self->bits) * MP_BITS_PER_BYTE;
return index / bits_size < self->alloc
&& (self->bits[index / bits_size] & (1 << (index % bits_size))) != 0;
}
static void bit_vector_set(bit_vector_t *self, size_t index) {
const size_t bits_size = sizeof(*self->bits) * MP_BITS_PER_BYTE;
self->max_bit_set = MAX(self->max_bit_set, index);
if (index / bits_size >= self->alloc) {
size_t new_alloc = self->alloc * 2;
self->bits = m_renew(uintptr_t, self->bits, self->alloc, new_alloc);
self->alloc = new_alloc;
}
self->bits[index / bits_size] |= 1 << (index % bits_size);
}
typedef struct _mp_opcode_t {
uint8_t opcode;
uint8_t format;
uint8_t size;
mp_int_t arg;
uint8_t extra_arg;
} mp_opcode_t;
static mp_opcode_t mp_opcode_decode(const uint8_t *ip) {
const uint8_t *ip_start = ip;
uint8_t opcode = *ip++;
uint8_t opcode_format = MP_BC_FORMAT(opcode);
mp_uint_t arg = 0;
uint8_t extra_arg = 0;
if (opcode_format == MP_BC_FORMAT_QSTR || opcode_format == MP_BC_FORMAT_VAR_UINT) {
arg = *ip & 0x7f;
if (opcode == MP_BC_LOAD_CONST_SMALL_INT && (arg & 0x40) != 0) {
arg |= (mp_uint_t)(-1) << 7;
}
while ((*ip & 0x80) != 0) {
arg = (arg << 7) | (*++ip & 0x7f);
}
++ip;
} else if (opcode_format == MP_BC_FORMAT_OFFSET) {
if ((*ip & 0x80) == 0) {
arg = *ip++;
if (MP_BC_OPCODE_HAS_SIGNED_OFFSET(opcode)) {
arg -= 0x40;
}
} else {
arg = (ip[0] & 0x7f) | (ip[1] << 7);
ip += 2;
if (MP_BC_OPCODE_HAS_SIGNED_OFFSET(opcode)) {
arg -= 0x4000;
}
}
}
if ((opcode & MP_BC_MASK_EXTRA_BYTE) == 0) {
extra_arg = *ip++;
}
mp_opcode_t op = { opcode, opcode_format, ip - ip_start, arg, extra_arg };
return op;
}
mp_obj_t mp_raw_code_save_fun_to_bytes(const mp_module_constants_t *consts, const uint8_t *bytecode) {
const uint8_t *fun_data = bytecode;
const uint8_t *fun_data_top = fun_data + gc_nbytes(fun_data);
// Extract function information.
const byte *ip = fun_data;
MP_BC_PRELUDE_SIG_DECODE(ip);
MP_BC_PRELUDE_SIZE_DECODE(ip);
// Track the qstrs used by the function.
bit_vector_t qstr_table_used;
bit_vector_init(&qstr_table_used);
// Track the objects used by the function.
bit_vector_t obj_table_used;
bit_vector_init(&obj_table_used);
const byte *ip_names = ip;
mp_uint_t simple_name = mp_decode_uint(&ip_names);
bit_vector_set(&qstr_table_used, simple_name);
for (size_t i = 0; i < n_pos_args + n_kwonly_args; ++i) {
mp_uint_t arg_name = mp_decode_uint(&ip_names);
bit_vector_set(&qstr_table_used, arg_name);
}
// Skip pass source code info and cell info.
// Then ip points to the start of the opcodes.
ip += n_info + n_cell;
// Decode bytecode.
while (ip < fun_data_top) {
mp_opcode_t op = mp_opcode_decode(ip);
if (op.opcode == MP_BC_BASE_RESERVED) {
// End of opcodes.
fun_data_top = ip;
} else if (op.opcode == MP_BC_LOAD_CONST_OBJ) {
bit_vector_set(&obj_table_used, op.arg);
} else if (op.format == MP_BC_FORMAT_QSTR) {
bit_vector_set(&qstr_table_used, op.arg);
}
ip += op.size;
}
mp_uint_t fun_data_len = fun_data_top - fun_data;
mp_print_t print;
vstr_t vstr;
vstr_init_print(&vstr, 64, &print);
// Start with .mpy header.
const uint8_t header[4] = { 'M', MPY_VERSION, 0, MP_SMALL_INT_BITS };
mp_print_bytes(&print, header, sizeof(header));
// Number of entries in constant table.
mp_print_uint(&print, qstr_table_used.max_bit_set + 1);
mp_print_uint(&print, obj_table_used.max_bit_set + 1);
// Save qstrs.
for (size_t i = 0; i <= qstr_table_used.max_bit_set; ++i) {
if (bit_vector_is_set(&qstr_table_used, i)) {
save_qstr(&print, consts->qstr_table[i]);
} else {
save_qstr(&print, MP_QSTR_);
}
}
// Save constant objects.
for (size_t i = 0; i <= obj_table_used.max_bit_set; ++i) {
if (bit_vector_is_set(&obj_table_used, i)) {
save_obj(&print, consts->obj_table[i]);
} else {
save_obj(&print, mp_const_none);
}
}
bit_vector_clear(&qstr_table_used);
bit_vector_clear(&obj_table_used);
// Save function kind and data length.
mp_print_uint(&print, fun_data_len << 3);
// Save function code.
mp_print_bytes(&print, fun_data, fun_data_len);
// Create and return bytes representing the .mpy data.
return mp_obj_new_bytes_from_vstr(&vstr);
}
#endif // MICROPY_PERSISTENT_CODE_SAVE_FUN
#if MICROPY_PERSISTENT_CODE_TRACK_RELOC_CODE
// An mp_obj_list_t that tracks relocated native code to prevent the GC from reclaiming them.
MP_REGISTER_ROOT_POINTER(mp_obj_t track_reloc_code_list);
#endif