Files
micropython/tools/mpy_ld.py
Alessandro Gatti bf2005de9e tools/mpy_ld.py: Resolve fixed-address symbols if requested.
This commit lets mpy_ld.py resolve symbols not only from the object
files involved in the linking process, or from compiler-supplied static
libraries, but also from a list of symbols referenced by an absolute
address (usually provided by the system's ROM).

This is needed for ESP8266 targets as some C stdlib functions are
provided by the MCU's own ROM code to reduce the final code footprint,
and therefore those functions' implementation was removed from the
compiler's support libraries.  This means that unless `LINK_RUNTIME` is
set (which lets tooling look at more libraries to resolve symbols) the
build process will fail as tooling is unaware of the ROM symbols'
existence.  With this change, fixed-address symbols can be exposed to
the symbol resolution step when performing natmod linking.

If there are symbols coming in from a fixed-address symbols list and
internal code or external libraries, the fixed-address symbol address
will take precedence in all cases.

Although this is - in theory - also working for the whole range of ESP32
MCUs, testing is currently limited to Xtensa processors and the example
natmods' makefiles only make use of this commit's changes for the
ESP8266 target.

Natmod builds can set the MPY_EXTERN_SYM_FILE variable pointing to a
linkerscript file containing a series of symbols (weak or strong) at a
fixed address; these symbols will then be used by the MicroPython
linker when packaging the natmod.  If a different natmod build method is
used (eg. custom CMake scripts), `tools/mpy_ld.py` can now accept a
command line parameter called `--externs` (or its short variant `-e`)
that contains the path of a linkerscript file with the fixed-address
symbols to use when performing the linking process.

The linkerscript file parser can handle a very limited subset of
binutils's linkerscript syntax, namely just block comments, strong
symbols, and weak symbols.  Each symbol must be in its own line for the
parser to succeed, empty lines or comment blocks are skipped.  For an
example of what this parser was meant to handle, you can look at
`ports/esp8266/boards/eagle.rom.addr.v6.ld` and follow its format.

The natmod developer documentation is also updated to reflect the new
command line argument accepted by `mpy_ld.py` and the use cases for the
changes introduced by this commit.

Signed-off-by: Alessandro Gatti <a.gatti@frob.it>
2025-06-04 22:35:39 +10:00

1591 lines
51 KiB
Python
Executable File

#!/usr/bin/env python3
#
# This file is part of the MicroPython project, http://micropython.org/
#
# The MIT License (MIT)
#
# Copyright (c) 2019 Damien P. George
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
Link .o files to .mpy
"""
import sys, os, struct, re
from elftools.elf import elffile
import ar_util
sys.path.append(os.path.dirname(__file__) + "/../py")
import makeqstrdata as qstrutil
# MicroPython constants
MPY_VERSION = 6
MPY_SUB_VERSION = 3
MP_CODE_BYTECODE = 2
MP_CODE_NATIVE_VIPER = 4
MP_NATIVE_ARCH_X86 = 1
MP_NATIVE_ARCH_X64 = 2
MP_NATIVE_ARCH_ARMV6M = 4
MP_NATIVE_ARCH_ARMV7M = 5
MP_NATIVE_ARCH_ARMV7EMSP = 7
MP_NATIVE_ARCH_ARMV7EMDP = 8
MP_NATIVE_ARCH_XTENSA = 9
MP_NATIVE_ARCH_XTENSAWIN = 10
MP_NATIVE_ARCH_RV32IMC = 11
MP_PERSISTENT_OBJ_STR = 5
MP_SCOPE_FLAG_VIPERRELOC = 0x10
MP_SCOPE_FLAG_VIPERRODATA = 0x20
MP_SCOPE_FLAG_VIPERBSS = 0x40
MP_SMALL_INT_BITS = 31
MP_FUN_TABLE_MP_TYPE_TYPE_OFFSET = 73
# ELF constants
R_386_32 = 1
R_RISCV_32 = 1
R_X86_64_64 = 1
R_XTENSA_32 = 1
R_386_PC32 = 2
R_X86_64_PC32 = 2
R_ARM_ABS32 = 2
R_386_GOT32 = 3
R_ARM_REL32 = 3
R_386_PLT32 = 4
R_X86_64_PLT32 = 4
R_XTENSA_PLT = 6
R_386_GOTOFF = 9
R_386_GOTPC = 10
R_ARM_THM_CALL = 10
R_XTENSA_ASM_EXPAND = 11
R_RISCV_BRANCH = 16
R_RISCV_JAL = 17
R_RISCV_CALL = 18
R_RISCV_CALL_PLT = 19
R_XTENSA_DIFF32 = 19
R_XTENSA_SLOT0_OP = 20
R_RISCV_GOT_HI20 = 20
R_RISCV_TLS_GD_HI20 = 22
R_RISCV_PCREL_HI20 = 23
R_RISCV_PCREL_LO12_I = 24
R_RISCV_PCREL_LO12_S = 25
R_ARM_BASE_PREL = 25 # aka R_ARM_GOTPC
R_ARM_GOT_BREL = 26 # aka R_ARM_GOT32
R_ARM_THM_JUMP24 = 30
R_RISCV_HI20 = 26
R_RISCV_LO12_I = 27
R_RISCV_LO12_S = 28
R_RISCV_TPREL_HI20 = 29
R_RISCV_TPREL_LO12_I = 30
R_RISCV_TPREL_LO12_S = 31
R_RISCV_TPREL_ADD = 32
R_RISCV_ADD8 = 33
R_RISCV_ADD16 = 34
R_RISCV_ADD32 = 35
R_RISCV_ADD64 = 36
R_RISCV_SUB8 = 37
R_RISCV_SUB16 = 38
R_RISCV_SUB32 = 39
R_RISCV_SUB64 = 40
R_RISCV_GOT32_PCREL = 41
R_X86_64_GOTPCREL = 9
R_X86_64_REX_GOTPCRELX = 42
R_386_GOT32X = 43
R_RISCV_ALIGN = 43
R_RISCV_RVC_BRANCH = 44
R_RISCV_RVC_JUMP = 45
R_RISCV_RELAX = 51
R_RISCV_SUB6 = 52
R_RISCV_SET6 = 53
R_RISCV_SET8 = 54
R_RISCV_SET16 = 55
R_RISCV_SET32 = 56
R_RISCV_32_PCREL = 57
R_RISCV_PLT32 = 59
R_XTENSA_PDIFF32 = 59
R_RISCV_SET_ULEB128 = 60
R_RISCV_SUB_ULEB128 = 61
R_RISCV_TLSDESC_HI20 = 62
R_RISCC_TLSDESC_LOAD_LO12 = 63
R_RISCV_TLSDESC_ADD_LO12 = 64
R_RISCV_TLSDESC_CALL = 65
################################################################################
# Architecture configuration
def asm_jump_x86(entry):
return struct.pack("<BI", 0xE9, entry - 5)
def asm_jump_thumb(entry):
# This function must return the same number of bytes for the encoding of the jump
# regardless of the value of `entry`.
b_off = entry - 4
if b_off >> 11 == 0 or b_off >> 11 == -1:
# Signed value fits in 12 bits.
b0 = 0xE000 | (b_off >> 1 & 0x07FF)
b1 = 0
b2 = 0
b3 = 0
else:
# Use bl to do a large jump/call:
# push {r0, lr}
# bl <dest>
# pop {r0, pc}
b_off -= 2 # skip "push {r0, lr}"
b0 = 0xB400 | 0x0100 | 0x0001 # push, lr, r0
b1 = 0xF000 | (((b_off) >> 12) & 0x07FF)
b2 = 0xF800 | (((b_off) >> 1) & 0x07FF)
b3 = 0xBC00 | 0x0100 | 0x0001 # pop, pc, r0
return struct.pack("<HHHH", b0, b1, b2, b3)
def asm_jump_thumb2(entry):
b_off = entry - 4
if b_off >> 11 == 0 or b_off >> 11 == -1:
# Signed value fits in 12 bits
b0 = 0xE000 | (b_off >> 1 & 0x07FF)
b1 = 0
else:
# Use large jump
b0 = 0xF000 | (b_off >> 12 & 0x07FF)
b1 = 0xB800 | (b_off >> 1 & 0x7FF)
return struct.pack("<HH", b0, b1)
def asm_jump_xtensa(entry):
jump_offset = entry - 4
jump_op = jump_offset << 6 | 6
return struct.pack("<BH", jump_op & 0xFF, jump_op >> 8)
def asm_jump_rv32(entry):
# This could be 6 bytes shorter, but the code currently cannot
# support a trampoline with varying length depending on the offset.
# auipc t6, HI(entry)
# jalr zero, t6, LO(entry)
upper, lower = split_riscv_address(entry)
return struct.pack(
"<II", (upper | 0x00000F97) & 0xFFFFFFFF, ((lower << 20) | 0x000F8067) & 0xFFFFFFFF
)
class ArchData:
def __init__(self, name, mpy_feature, word_size, arch_got, asm_jump, *, separate_rodata=False):
self.name = name
self.mpy_feature = mpy_feature
self.qstr_entry_size = 2
self.word_size = word_size
self.arch_got = arch_got
self.asm_jump = asm_jump
self.separate_rodata = separate_rodata
ARCH_DATA = {
"x86": ArchData(
"EM_386",
MP_NATIVE_ARCH_X86 << 2,
4,
(R_386_PC32, R_386_GOT32, R_386_GOT32X),
asm_jump_x86,
),
"x64": ArchData(
"EM_X86_64",
MP_NATIVE_ARCH_X64 << 2,
8,
(R_X86_64_GOTPCREL, R_X86_64_REX_GOTPCRELX),
asm_jump_x86,
),
"armv6m": ArchData(
"EM_ARM",
MP_NATIVE_ARCH_ARMV6M << 2,
4,
(R_ARM_GOT_BREL,),
asm_jump_thumb,
),
"armv7m": ArchData(
"EM_ARM",
MP_NATIVE_ARCH_ARMV7M << 2,
4,
(R_ARM_GOT_BREL,),
asm_jump_thumb2,
),
"armv7emsp": ArchData(
"EM_ARM",
MP_NATIVE_ARCH_ARMV7EMSP << 2,
4,
(R_ARM_GOT_BREL,),
asm_jump_thumb2,
),
"armv7emdp": ArchData(
"EM_ARM",
MP_NATIVE_ARCH_ARMV7EMDP << 2,
4,
(R_ARM_GOT_BREL,),
asm_jump_thumb2,
),
"xtensa": ArchData(
"EM_XTENSA",
MP_NATIVE_ARCH_XTENSA << 2,
4,
(R_XTENSA_32, R_XTENSA_PLT),
asm_jump_xtensa,
),
"xtensawin": ArchData(
"EM_XTENSA",
MP_NATIVE_ARCH_XTENSAWIN << 2,
4,
(R_XTENSA_32, R_XTENSA_PLT),
asm_jump_xtensa,
separate_rodata=True,
),
"rv32imc": ArchData(
"EM_RISCV",
MP_NATIVE_ARCH_RV32IMC << 2,
4,
(R_RISCV_32, R_RISCV_GOT_HI20, R_RISCV_GOT32_PCREL),
asm_jump_rv32,
),
}
################################################################################
# Helper functions
def align_to(value, align):
return (value + align - 1) & ~(align - 1)
def unpack_u24le(data, offset):
return data[offset] | data[offset + 1] << 8 | data[offset + 2] << 16
def pack_u24le(data, offset, value):
data[offset] = value & 0xFF
data[offset + 1] = value >> 8 & 0xFF
data[offset + 2] = value >> 16 & 0xFF
def split_riscv_address(value):
# The address can be represented with just the lowest 12 bits
if value < 0 and value > -2048:
value = 4096 + value
return 0, value
# 2s complement
if value < 0:
value = 0x100000000 + value
upper, lower = (value & 0xFFFFF000), (value & 0xFFF)
if lower & 0x800 != 0:
# Reverse lower part sign extension
upper += 0x1000
return upper & 0xFFFFFFFF, lower & 0xFFFFFFFF
def xxd(text):
for i in range(0, len(text), 16):
print("{:08x}:".format(i), end="")
for j in range(4):
off = i + j * 4
if off < len(text):
d = int.from_bytes(text[off : off + 4], "little")
print(" {:08x}".format(d), end="")
print()
# Smaller numbers are enabled first
LOG_LEVEL_1 = 1
LOG_LEVEL_2 = 2
LOG_LEVEL_3 = 3
log_level = LOG_LEVEL_1
def log(level, msg):
if level <= log_level:
print(msg)
################################################################################
# Qstr extraction
def extract_qstrs(source_files):
def read_qstrs(f):
with open(f) as f:
vals = set()
for line in f:
for m in re.finditer(r"MP_QSTR_[A-Za-z0-9_]*", line):
vals.add(m.group())
return vals
static_qstrs = ["MP_QSTR_" + qstrutil.qstr_escape(q) for q in qstrutil.static_qstr_list]
qstr_vals = set()
for f in source_files:
vals = read_qstrs(f)
qstr_vals.update(vals)
qstr_vals.difference_update(static_qstrs)
return static_qstrs, qstr_vals
################################################################################
# Linker
class LinkError(Exception):
pass
class Section:
def __init__(self, name, data, alignment, filename=None):
self.filename = filename
self.name = name
self.data = data
self.alignment = alignment
self.addr = 0
self.reloc = []
@staticmethod
def from_elfsec(elfsec, filename):
assert elfsec.header.sh_addr == 0
return Section(elfsec.name, elfsec.data(), elfsec.data_alignment, filename)
class GOTEntry:
def __init__(self, name, sym, link_addr=0):
self.name = name
self.sym = sym
self.offset = None
self.link_addr = link_addr
def isexternal(self):
return self.sec_name.startswith(".external")
def istext(self):
return self.sec_name.startswith(".text")
def isrodata(self):
return self.sec_name.startswith((".rodata", ".data.rel.ro"))
def isbss(self):
return self.sec_name.startswith(".bss")
class LiteralEntry:
def __init__(self, value, offset):
self.value = value
self.offset = offset
class LinkEnv:
def __init__(self, arch):
self.arch = ARCH_DATA[arch]
self.sections = [] # list of sections in order of output
self.literal_sections = [] # list of literal sections (xtensa only)
self.known_syms = {} # dict of symbols that are defined
self.unresolved_syms = [] # list of unresolved symbols
self.mpy_relocs = [] # list of relocations needed in the output .mpy file
self.externs = {} # dict of externally-defined symbols
def check_arch(self, arch_name):
if arch_name != self.arch.name:
raise LinkError("incompatible arch")
def print_sections(self):
log(LOG_LEVEL_2, "sections:")
for sec in self.sections:
log(LOG_LEVEL_2, " {:08x} {} size={}".format(sec.addr, sec.name, len(sec.data)))
def find_addr(self, name):
if name in self.known_syms:
s = self.known_syms[name]
return s.section.addr + s["st_value"]
raise LinkError("unknown symbol: {}".format(name))
def build_got_generic(env):
env.got_entries = {}
for sec in env.sections:
for r in sec.reloc:
s = r.sym
if not (
s.entry["st_info"]["bind"] in ("STB_GLOBAL", "STB_WEAK")
and r["r_info_type"] in env.arch.arch_got
):
continue
s_type = s.entry["st_info"]["type"]
assert s_type in ("STT_NOTYPE", "STT_FUNC", "STT_OBJECT"), s_type
assert s.name
if s.name in env.got_entries:
continue
env.got_entries[s.name] = GOTEntry(s.name, s)
def build_got_xtensa(env):
env.got_entries = {}
env.lit_entries = {}
env.xt_literals = {}
# Extract the values from the literal table
for sec in env.literal_sections:
assert len(sec.data) % env.arch.word_size == 0
# Look through literal relocations to find any global pointers that should be GOT entries
for r in sec.reloc:
s = r.sym
s_type = s.entry["st_info"]["type"]
assert s_type in ("STT_NOTYPE", "STT_FUNC", "STT_OBJECT", "STT_SECTION"), s_type
assert r["r_info_type"] in env.arch.arch_got
assert r["r_offset"] % env.arch.word_size == 0
# This entry is a global pointer
existing = struct.unpack_from("<I", sec.data, r["r_offset"])[0]
if s_type == "STT_SECTION":
assert r["r_addend"] == 0
name = "{}+0x{:x}".format(s.section.name, existing)
else:
assert existing == 0
name = s.name
if r["r_addend"] != 0:
name = "{}+0x{:x}".format(name, r["r_addend"])
idx = "{}+0x{:x}".format(sec.filename, r["r_offset"])
env.xt_literals[idx] = name
if name in env.got_entries:
# Deduplicate GOT entries
continue
env.got_entries[name] = GOTEntry(name, s, existing)
# Go through all literal entries finding those that aren't global pointers so must be actual literals
for i in range(0, len(sec.data), env.arch.word_size):
idx = "{}+0x{:x}".format(sec.filename, i)
if idx not in env.xt_literals:
# This entry is an actual literal
value = struct.unpack_from("<I", sec.data, i)[0]
env.xt_literals[idx] = value
if value in env.lit_entries:
# Deduplicate literals
continue
env.lit_entries[value] = LiteralEntry(
value, len(env.lit_entries) * env.arch.word_size
)
def populate_got(env):
# Compute GOT destination addresses
for got_entry in env.got_entries.values():
sym = got_entry.sym
if hasattr(sym, "resolved"):
sym = sym.resolved
if sym.name in env.externs:
got_entry.sec_name = ".external.fixed_addr"
got_entry.link_addr = env.externs[sym.name]
else:
sec = sym.section
addr = sym["st_value"]
got_entry.sec_name = sec.name
got_entry.link_addr += sec.addr + addr
# Get sorted GOT, sorted by external, text, rodata, bss so relocations can be combined
got_list = sorted(
env.got_entries.values(),
key=lambda g: g.isexternal() + 2 * g.istext() + 3 * g.isrodata() + 4 * g.isbss(),
)
# Layout and populate the GOT
offset = 0
for got_entry in got_list:
got_entry.offset = offset
offset += env.arch.word_size
o = env.got_section.addr + got_entry.offset
env.full_text[o : o + env.arch.word_size] = got_entry.link_addr.to_bytes(
env.arch.word_size, "little"
)
# Create a relocation for each GOT entry
for got_entry in got_list:
if got_entry.name in ("mp_native_qstr_table", "mp_native_obj_table", "mp_fun_table"):
dest = got_entry.name
elif got_entry.name.startswith("mp_fun_table+0x"):
dest = int(got_entry.name.split("+")[1], 16) // env.arch.word_size
elif got_entry.sec_name == ".external.mp_fun_table":
dest = got_entry.sym.mp_fun_table_offset
elif got_entry.sec_name == ".external.fixed_addr":
# Fixed-address symbols should not be relocated.
continue
elif got_entry.sec_name.startswith(".text"):
dest = ".text"
elif got_entry.sec_name.startswith(".rodata"):
dest = ".rodata"
elif got_entry.sec_name.startswith(".data.rel.ro"):
dest = ".data.rel.ro"
elif got_entry.sec_name.startswith(".bss"):
dest = ".bss"
else:
assert 0, (got_entry.name, got_entry.sec_name)
env.mpy_relocs.append((".text", env.got_section.addr + got_entry.offset, dest))
# Print out the final GOT
log(LOG_LEVEL_2, "GOT: {:08x}".format(env.got_section.addr))
for g in got_list:
log(
LOG_LEVEL_2,
" {:08x} {} -> {}+{:08x}".format(g.offset, g.name, g.sec_name, g.link_addr),
)
def populate_lit(env):
log(LOG_LEVEL_2, "LIT: {:08x}".format(env.lit_section.addr))
for lit_entry in env.lit_entries.values():
value = lit_entry.value
log(LOG_LEVEL_2, " {:08x} = {:08x}".format(lit_entry.offset, value))
o = env.lit_section.addr + lit_entry.offset
env.full_text[o : o + env.arch.word_size] = value.to_bytes(env.arch.word_size, "little")
def do_relocation_text(env, text_addr, r):
# Extract relevant info about symbol that's being relocated
s = r.sym
s_bind = s.entry["st_info"]["bind"]
s_type = s.entry["st_info"]["type"]
r_offset = r["r_offset"] + text_addr
r_info_type = r["r_info_type"]
try:
# only for RELA sections
r_addend = r["r_addend"]
except KeyError:
r_addend = 0
# Default relocation type and name for logging
reloc_type = "le32"
log_name = None
addr = None
value = None
if (
env.arch.name == "EM_386"
and r_info_type in (R_386_PC32, R_386_PLT32)
or env.arch.name == "EM_X86_64"
and r_info_type in (R_X86_64_PC32, R_X86_64_PLT32)
or env.arch.name == "EM_ARM"
and r_info_type in (R_ARM_REL32, R_ARM_THM_CALL, R_ARM_THM_JUMP24)
or s_bind == "STB_LOCAL"
and env.arch.name == "EM_XTENSA"
and r_info_type == R_XTENSA_32 # not GOT
):
# Standard relocation to fixed location within text/rodata
if hasattr(s, "resolved"):
s = s.resolved
sec = s.section
if env.arch.separate_rodata and sec.name.startswith(".rodata"):
raise LinkError("fixed relocation to rodata with rodata referenced via GOT")
if sec.name.startswith(".bss"):
raise LinkError(
"{}: fixed relocation to bss (bss variables can't be static)".format(s.filename)
)
if sec.name.startswith(".external"):
raise LinkError(
"{}: fixed relocation to external symbol: {}".format(s.filename, s.name)
)
addr = sec.addr + s["st_value"]
reloc = addr - r_offset + r_addend
if r_info_type in (R_ARM_THM_CALL, R_ARM_THM_JUMP24):
# Both relocations have the same bit pattern to rewrite:
# R_ARM_THM_CALL: bl
# R_ARM_THM_JUMP24: b.w
reloc_type = "thumb_b"
elif (
env.arch.name == "EM_386"
and r_info_type == R_386_GOTPC
or env.arch.name == "EM_ARM"
and r_info_type == R_ARM_BASE_PREL
):
# Relocation to GOT address itself
assert s.name == "_GLOBAL_OFFSET_TABLE_"
addr = env.got_section.addr
reloc = addr - r_offset + r_addend
elif (
env.arch.name == "EM_386"
and r_info_type in (R_386_GOT32, R_386_GOT32X)
or env.arch.name == "EM_ARM"
and r_info_type == R_ARM_GOT_BREL
):
# Relcation pointing to GOT
reloc = addr = env.got_entries[s.name].offset
elif env.arch.name == "EM_X86_64" and r_info_type in (
R_X86_64_GOTPCREL,
R_X86_64_REX_GOTPCRELX,
):
# Relcation pointing to GOT
got_entry = env.got_entries[s.name]
addr = env.got_section.addr + got_entry.offset
reloc = addr - r_offset + r_addend
elif env.arch.name == "EM_386" and r_info_type == R_386_GOTOFF:
# Relocation relative to GOT
addr = s.section.addr + s["st_value"]
reloc = addr - env.got_section.addr + r_addend
elif env.arch.name == "EM_XTENSA" and r_info_type == R_XTENSA_SLOT0_OP:
# Relocation pointing to GOT, xtensa specific
sec = s.section
if sec.name.startswith(".text"):
# it looks like R_XTENSA_SLOT0_OP into .text is already correctly relocated
return
assert sec.name.startswith(".literal"), sec.name
lit_idx = "{}+0x{:x}".format(sec.filename, r_addend)
lit_ptr = env.xt_literals[lit_idx]
if isinstance(lit_ptr, str):
addr = env.got_section.addr + env.got_entries[lit_ptr].offset
log_name = "GOT {}".format(lit_ptr)
else:
addr = env.lit_section.addr + env.lit_entries[lit_ptr].offset
log_name = "LIT"
reloc = addr - r_offset
reloc_type = "xtensa_l32r"
elif env.arch.name == "EM_XTENSA" and r_info_type in (
R_XTENSA_DIFF32,
R_XTENSA_PDIFF32,
R_XTENSA_ASM_EXPAND,
):
if not hasattr(s, "section") or s.section.name.startswith(".text"):
# it looks like R_XTENSA_[P]DIFF32 into .text is already correctly relocated,
# and expand relaxations cannot occur in non-executable sections.
return
assert 0
elif env.arch.name == "EM_RISCV" and r_info_type in (
R_RISCV_TLS_GD_HI20,
R_RISCV_TLSDESC_HI20,
R_RISCV_TLSDESC_ADD_LO12,
R_RISCV_TLSDESC_CALL,
):
# TLS relocations are not supported.
raise LinkError("{}: RISC-V TLS relocation: {}".format(s.filename, s.name))
elif env.arch.name == "EM_RISCV" and r_info_type in (
R_RISCV_TPREL_HI20,
R_RISCV_TPREL_LO12_I,
R_RISCV_TPREL_LO12_S,
R_RISCV_TPREL_ADD,
):
# ThreadPointer-relative relocations are not supported.
raise LinkError("{}: RISC-V TP-relative relocation: {}".format(s.filename, s.name))
elif env.arch.name == "EM_RISCV" and r_info_type in (R_RISCV_SET_ULEB128, R_RISCV_SUB_ULEB128):
# 128-bit value relocations are not supported
raise LinkError("{}: RISC-V ULEB128 relocation: {}".format(s.filename, s.name))
elif env.arch.name == "EM_RISCV" and r_info_type in (R_RISCV_RELAX, R_RISCV_ALIGN):
# To keep things simple, no relocations are relaxed and thus no
# size optimisation is performed even if there is the chance, along
# with no offsets to fix up.
return
elif env.arch.name == "EM_RISCV":
(addr, value) = process_riscv32_relocation(env, text_addr, r)
elif env.arch.name == "EM_ARM" and r_info_type == R_ARM_ABS32:
# happens for soft-float on armv6m
raise ValueError("Absolute relocations not supported on ARM")
else:
# Unknown/unsupported relocation
assert 0, (r_info_type, s.name, s.entry, env.arch.name)
# Write relocation
if env.arch.name == "EM_RISCV":
# This case is already handled by `process_riscv_relocation`.
pass
elif reloc_type == "le32":
(existing,) = struct.unpack_from("<I", env.full_text, r_offset)
struct.pack_into("<I", env.full_text, r_offset, (existing + reloc) & 0xFFFFFFFF)
elif reloc_type == "thumb_b":
b_h, b_l = struct.unpack_from("<HH", env.full_text, r_offset)
existing = (b_h & 0x7FF) << 12 | (b_l & 0x7FF) << 1
if existing >= 0x400000: # 2's complement
existing -= 0x800000
new = existing + reloc
b_h = (b_h & 0xF800) | (new >> 12) & 0x7FF
b_l = (b_l & 0xF800) | (new >> 1) & 0x7FF
struct.pack_into("<HH", env.full_text, r_offset, b_h, b_l)
elif reloc_type == "xtensa_l32r":
l32r = unpack_u24le(env.full_text, r_offset)
assert l32r & 0xF == 1 # RI16 encoded l32r
l32r_imm16 = l32r >> 8
l32r_imm16 = (l32r_imm16 + reloc >> 2) & 0xFFFF
l32r = l32r & 0xFF | l32r_imm16 << 8
pack_u24le(env.full_text, r_offset, l32r)
else:
assert 0, reloc_type
# Log information about relocation
if log_name is None:
if s_type == "STT_SECTION":
log_name = s.section.name
else:
log_name = s.name
if addr is not None:
log(LOG_LEVEL_3, " {:08x} {} -> {:08x}".format(r_offset, log_name, addr))
else:
log(LOG_LEVEL_3, " {:08x} {} == {:08x}".format(r_offset, log_name, value))
def do_relocation_data(env, text_addr, r):
s = r.sym
s_type = s.entry["st_info"]["type"]
r_offset = r["r_offset"] + text_addr
r_info_type = r["r_info_type"]
try:
# only for RELA sections
r_addend = r["r_addend"]
except KeyError:
r_addend = 0
if (
env.arch.name == "EM_386"
and r_info_type == R_386_32
or env.arch.name == "EM_X86_64"
and r_info_type == R_X86_64_64
or env.arch.name == "EM_ARM"
and r_info_type == R_ARM_ABS32
or env.arch.name == "EM_XTENSA"
and r_info_type == R_XTENSA_32
or env.arch.name == "EM_RISCV"
and r_info_type == R_RISCV_32
):
# Relocation in data.rel.ro to internal/external symbol
if env.arch.word_size == 4:
struct_type = "<I"
elif env.arch.word_size == 8:
struct_type = "<Q"
if hasattr(s, "resolved"):
s = s.resolved
sec = s.section
assert r_offset % env.arch.word_size == 0
addr = sec.addr + s["st_value"] + r_addend
if s_type == "STT_SECTION":
log_name = sec.name
else:
log_name = s.name
log(LOG_LEVEL_3, " {:08x} -> {} {:08x}".format(r_offset, log_name, addr))
if env.arch.separate_rodata:
data = env.full_rodata
else:
data = env.full_text
(existing,) = struct.unpack_from(struct_type, data, r_offset)
if sec.name.startswith((".text", ".rodata", ".data.rel.ro", ".bss")):
struct.pack_into(struct_type, data, r_offset, existing + addr)
kind = sec.name
elif sec.name == ".external.mp_fun_table":
assert addr == 0
kind = s.mp_fun_table_offset
else:
assert 0, sec.name
if env.arch.separate_rodata:
base = ".rodata"
else:
base = ".text"
env.mpy_relocs.append((base, r_offset, kind))
else:
# Unknown/unsupported relocation
assert 0, r_info_type
RISCV_RELOCATIONS_TYPE_MAP = {
R_RISCV_ADD8: ("riscv_addsub", "B", 8, 1),
R_RISCV_ADD16: ("riscv_addsub", "<H", 16, 1),
R_RISCV_ADD32: ("riscv_addsub", "<I", 32, 1),
R_RISCV_ADD64: ("riscv_addsub", "<Q", 64, 1),
R_RISCV_SUB6: ("riscv_addsub", "B", 6, -1),
R_RISCV_SUB8: ("riscv_addsub", "B", 8, -1),
R_RISCV_SUB16: ("riscv_addsub", "<H", 16, -1),
R_RISCV_SUB32: ("riscv_addsub", "<I", 32, -1),
R_RISCV_SUB64: ("riscv_addsub", "<Q", 64, -1),
R_RISCV_SET6: ("riscv_set6", "B", 6),
R_RISCV_SET8: ("riscv_set8", "B", 8),
R_RISCV_SET16: ("riscv_set16", "<H", 16),
R_RISCV_SET32: ("riscv_set32", "<I", 32),
R_RISCV_JAL: "riscv_j",
R_RISCV_BRANCH: "riscv_b",
R_RISCV_RVC_BRANCH: "riscv_cb",
R_RISCV_RVC_JUMP: "riscv_cj",
R_RISCV_CALL: "riscv_call",
R_RISCV_CALL_PLT: "riscv_call",
R_RISCV_PCREL_LO12_I: "riscv_lo12i",
R_RISCV_PCREL_LO12_S: "riscv_lo12s",
R_RISCV_LO12_I: "riscv_lo12i",
R_RISCV_LO12_S: "riscv_lo12s",
R_RISCV_32_PCREL: "riscv_32pcrel",
R_RISCV_PLT32: "riscv_32pcrel",
}
def process_riscv32_relocation(env, text_addr, r):
assert env.arch.name == "EM_RISCV"
addr = None
value = None
s = r.sym
if hasattr(s, "resolved"):
s = s.resolved
r_offset = r["r_offset"] + text_addr
r_info_type = r["r_info_type"]
try:
r_addend = r["r_addend"]
except KeyError:
r_addend = 0
if r_info_type == R_RISCV_GOT_HI20:
got_entry = env.got_entries[s.name]
addr = env.got_section.addr + got_entry.offset
reloc = addr + r_addend - r_offset
r.computed_reloc = reloc
reloc_type = "riscv_hi20"
elif r_info_type == R_RISCV_GOT32_PCREL:
got_entry = env.got_entries[s.name]
addr = env.got_section.addr + got_entry.offset
value = addr + r_addend - r_offset
reloc_type = "riscv_set32"
elif r_info_type == R_RISCV_PCREL_HI20:
addr = s.section.addr + s["st_value"]
reloc = addr + r_addend - r_offset
r.computed_reloc = reloc
reloc_type = "riscv_hi20"
elif r_info_type == R_RISCV_HI20:
addr = s.section.addr + s["st_value"]
reloc = addr + r_addend
r.computed_reloc = reloc
reloc_type = "riscv_hi20"
elif r_info_type in (
R_RISCV_PCREL_LO12_I,
R_RISCV_PCREL_LO12_S,
R_RISCV_LO12_I,
R_RISCV_LO12_S,
):
parent = None
for potential_parent in s.section.reloc:
if potential_parent["r_offset"] != s["st_value"]:
continue
if potential_parent["r_info_type"] not in (
R_RISCV_GOT_HI20,
R_RISCV_PCREL_HI20,
R_RISCV_HI20,
):
continue
parent = potential_parent
break
if parent is None:
assert 0, r
addr = s.section.addr + s["st_value"]
reloc = parent.computed_reloc
reloc_type = RISCV_RELOCATIONS_TYPE_MAP[r_info_type]
elif r_info_type in (
R_RISCV_JAL,
R_RISCV_RVC_BRANCH,
R_RISCV_RVC_JUMP,
R_RISCV_CALL,
R_RISCV_CALL_PLT,
R_RISCV_BRANCH,
R_RISCV_32_PCREL,
R_RISCV_PLT32,
):
addr = s.section.addr + s["st_value"]
reloc = addr + r_addend - r_offset
reloc_type = RISCV_RELOCATIONS_TYPE_MAP[r_info_type]
elif r_info_type in (
R_RISCV_ADD8,
R_RISCV_ADD16,
R_RISCV_ADD32,
R_RISCV_ADD64,
R_RISCV_SUB6,
R_RISCV_SUB8,
R_RISCV_SUB16,
R_RISCV_SUB32,
R_RISCV_SUB64,
R_RISCV_SET6,
R_RISCV_SET8,
R_RISCV_SET16,
R_RISCV_SET32,
):
value = s.section.addr + s["st_value"] + r_addend
reloc_type, *reloc_args = RISCV_RELOCATIONS_TYPE_MAP[r_info_type]
else:
# Unknown/unsupported relocation
assert 0, r_info_type
# Write relocation
if reloc_type == "riscv_hi20":
# Patch the upper 20 bits of the opcode
upper, _ = split_riscv_address(reloc)
(existing,) = struct.unpack_from("<I", env.full_text, r_offset)
struct.pack_into(
"<I",
env.full_text,
r_offset,
((existing & 0xFFF) | upper) & 0xFFFFFFFF,
)
elif reloc_type == "riscv_lo12i":
# Patch the lower 12 bits of an I-opcode immediate.
_, lower = split_riscv_address(reloc)
(existing,) = struct.unpack_from("<I", env.full_text, r_offset)
struct.pack_into(
"<I",
env.full_text,
r_offset,
((existing & 0xFFFFF) | ((lower & 0xFFF) << 20)) & 0xFFFFFFFF,
)
elif reloc_type == "riscv_lo12s":
# Patch the lower 12 bits of an S-opcode immediate.
_, lower = split_riscv_address(reloc)
(existing,) = struct.unpack_from("<I", env.full_text, r_offset)
struct.pack_into(
"<I",
env.full_text,
r_offset,
((existing & 0xFE000F80) | ((lower & 0xFE0) << 20) | ((lower & 0x1F) << 7))
& 0xFFFFFFFF,
)
elif reloc_type == "riscv_cb":
# Patch the target of a compressed branch opcode
(existing,) = struct.unpack_from("<H", env.full_text, r_offset)
struct.pack_into(
"<H",
env.full_text,
r_offset,
(
(existing & 0xE383)
| ((reloc & 0x100) << 4)
| ((reloc & 0xC0) >> 1)
| ((reloc & 0x20) >> 3)
| ((reloc & 0x18) << 7)
| ((reloc & 0x06) << 2)
)
& 0xFFFF,
)
elif reloc_type == "riscv_cj":
# Patch the target of a compressed jump opcode
(existing,) = struct.unpack_from("<H", env.full_text, r_offset)
struct.pack_into(
"<H",
env.full_text,
r_offset,
(
(existing & 0xE003)
| ((reloc & 0x800) << 1)
| ((reloc & 0x400) >> 2)
| ((reloc & 0x300) << 1)
| ((reloc & 0x80) >> 1)
| ((reloc & 0x40) << 1)
| ((reloc & 0x20) >> 3)
| ((reloc & 0x10) << 7)
| ((reloc & 0x0E) << 2)
)
& 0xFFFF,
)
elif reloc_type == "riscv_call":
# Patch a pair of opcodes forming a call operation
upper, lower = split_riscv_address(reloc)
(existing,) = struct.unpack_from("<I", env.full_text, r_offset)
struct.pack_into(
"<I",
env.full_text,
r_offset,
((existing & 0xFFF) | upper) & 0xFFFFFFFF,
)
(existing,) = struct.unpack_from("<I", env.full_text, r_offset + 4)
struct.pack_into(
"<I",
env.full_text,
r_offset + 4,
((existing & 0xFFFFF) | (lower << 20)) & 0xFFFFFFFF,
)
elif reloc_type == "riscv_b":
# Patch a conditional opcode
(existing,) = struct.unpack_from("<I", env.full_text, r_offset)
struct.pack_into(
"<I",
env.full_text,
r_offset,
(
(existing & 0x01FFF07F)
| ((reloc & 0x1000) << 19)
| ((reloc & 0x800) >> 4)
| ((reloc & 0x7E0) << 20)
| ((reloc & 0x1E) << 7)
)
& 0xFFFFFFFF,
)
elif reloc_type == "riscv_j":
# Patch a jump/jump with link opcode
(existing,) = struct.unpack_from("<I", env.full_text, r_offset)
struct.pack_into(
"<I",
env.full_text,
r_offset,
(
(existing & 0xFFF)
| ((reloc & 0x100000) << 11)
| (reloc & 0xFF000)
| ((reloc & 0x800) << 9)
| ((reloc & 0x7FE) << 20)
),
)
elif reloc_type == "riscv_addsub":
(fmt, bits, multiplier) = reloc_args
(existing,) = struct.unpack_from(fmt, env.full_text, r_offset)
mask = (1 << bits) - 1
value = (existing & mask) + (value * multiplier)
if value < 0:
value = (1 << bits) + value
struct.pack_into(fmt, env.full_text, r_offset, (existing & ~mask) | (value & mask))
elif reloc_type == "riscv_set":
(fmt, bits) = reloc_args
(existing,) = struct.unpack_from(fmt, env.full_text, r_offset)
mask = (1 << bits) - 1
struct.pack_into(fmt, env.full_text, r_offset, (existing & ~mask) | (value & mask))
elif reloc_type == "riscv_32pcrel":
# Write the distance from the current PC
struct.pack_into("<I", env.full_text, r_offset, reloc & 0xFFFFFFFF)
else:
assert 0, reloc_type
return addr, value
def load_object_file(env, f, felf):
elf = elffile.ELFFile(f)
env.check_arch(elf["e_machine"])
# Get symbol table
symtab = list(elf.get_section_by_name(".symtab").iter_symbols())
# Load needed sections from ELF file
sections_shndx = {} # maps elf shndx to Section object
for idx, s in enumerate(elf.iter_sections()):
if s.header.sh_type in ("SHT_PROGBITS", "SHT_NOBITS"):
if s.data_size == 0:
# Ignore empty sections
pass
elif s.name.startswith((".literal", ".text", ".rodata", ".data.rel.ro", ".bss")):
sec = Section.from_elfsec(s, felf)
sections_shndx[idx] = sec
if s.name.startswith(".literal"):
env.literal_sections.append(sec)
else:
env.sections.append(sec)
elif s.name.startswith(".data"):
raise LinkError("{}: {} non-empty".format(felf, s.name))
else:
# Ignore section
pass
elif s.header.sh_type in ("SHT_REL", "SHT_RELA"):
shndx = s.header.sh_info
if shndx in sections_shndx:
sec = sections_shndx[shndx]
sec.reloc_name = s.name
sec.reloc = list(s.iter_relocations())
for r in sec.reloc:
r.sym = symtab[r["r_info_sym"]]
# Link symbols to their sections, and update known and unresolved symbols
dup_errors = []
for sym in symtab:
sym.filename = felf
shndx = sym.entry["st_shndx"]
if shndx in sections_shndx:
# Symbol with associated section
sym.section = sections_shndx[shndx]
if sym["st_info"]["bind"] in ("STB_GLOBAL", "STB_WEAK"):
# Defined global symbol
if sym.name in env.known_syms and not sym.name.startswith("__x86.get_pc_thunk."):
dup_errors.append("duplicate symbol: {}".format(sym.name))
env.known_syms[sym.name] = sym
elif sym.entry["st_shndx"] == "SHN_UNDEF" and sym["st_info"]["bind"] == "STB_GLOBAL":
# Undefined global symbol, needs resolving
env.unresolved_syms.append(sym)
if dup_errors:
raise LinkError("\n".join(dup_errors))
def link_objects(env, native_qstr_vals_len):
# Build GOT information
if env.arch.name == "EM_XTENSA":
build_got_xtensa(env)
else:
build_got_generic(env)
# Creat GOT section
got_size = len(env.got_entries) * env.arch.word_size
env.got_section = Section("GOT", bytearray(got_size), env.arch.word_size)
if env.arch.name == "EM_XTENSA":
env.sections.insert(0, env.got_section)
else:
env.sections.append(env.got_section)
# Create optional literal section
if env.arch.name == "EM_XTENSA":
lit_size = len(env.lit_entries) * env.arch.word_size
env.lit_section = Section("LIT", bytearray(lit_size), env.arch.word_size)
env.sections.insert(1, env.lit_section)
# Create section to contain mp_native_qstr_table
env.qstr_table_section = Section(
".external.qstr_table",
bytearray(native_qstr_vals_len * env.arch.qstr_entry_size),
env.arch.qstr_entry_size,
)
# Create section to contain mp_native_obj_table
env.obj_table_section = Section(
".external.obj_table",
bytearray(0 * env.arch.word_size), # currently empty
env.arch.word_size,
)
# Resolve unknown symbols
mp_fun_table_sec = Section(".external.mp_fun_table", b"", 0)
fun_table = {
key: MP_FUN_TABLE_MP_TYPE_TYPE_OFFSET + idx
for idx, key in enumerate(
[
"mp_type_type",
"mp_type_str",
"mp_type_list",
"mp_type_dict",
"mp_type_fun_builtin_0",
"mp_type_fun_builtin_1",
"mp_type_fun_builtin_2",
"mp_type_fun_builtin_3",
"mp_type_fun_builtin_var",
"mp_type_Exception",
"mp_stream_read_obj",
"mp_stream_readinto_obj",
"mp_stream_unbuffered_readline_obj",
"mp_stream_write_obj",
]
)
}
undef_errors = []
for sym in env.unresolved_syms:
assert sym["st_value"] == 0
if sym.name == "_GLOBAL_OFFSET_TABLE_":
pass
elif sym.name == "mp_fun_table":
sym.section = Section(".external", b"", 0)
elif sym.name == "mp_native_qstr_table":
sym.section = env.qstr_table_section
elif sym.name == "mp_native_obj_table":
sym.section = env.obj_table_section
elif sym.name in env.known_syms:
sym.resolved = env.known_syms[sym.name]
elif sym.name in env.externs:
# Fixed-address symbols do not need pre-processing.
continue
else:
if sym.name in fun_table:
sym.section = mp_fun_table_sec
sym.mp_fun_table_offset = fun_table[sym.name]
else:
undef_errors.append("{}: undefined symbol: {}".format(sym.filename, sym.name))
for sym in env.externs:
if sym in env.known_syms:
log(
LOG_LEVEL_1,
"Symbol {} is a fixed-address symbol at {:08x} and is also provided from an object file".format(
sym, env.externs[sym]
),
)
if undef_errors:
raise LinkError("\n".join(undef_errors))
# Align sections, assign their addresses, and create full_text
env.full_text = bytearray(env.arch.asm_jump(8)) # dummy, to be filled in later
env.full_rodata = bytearray(0)
env.full_bss = bytearray(0)
for sec in env.sections:
if env.arch.separate_rodata and sec.name.startswith((".rodata", ".data.rel.ro")):
data = env.full_rodata
elif sec.name.startswith(".bss"):
data = env.full_bss
else:
data = env.full_text
sec.addr = align_to(len(data), sec.alignment)
data.extend(b"\x00" * (sec.addr - len(data)))
data.extend(sec.data)
env.print_sections()
populate_got(env)
if env.arch.name == "EM_XTENSA":
populate_lit(env)
# Fill in relocations
for sec in env.sections:
if not sec.reloc:
continue
log(
LOG_LEVEL_3,
"{}: {} relocations via {}:".format(sec.filename, sec.name, sec.reloc_name),
)
for r in sec.reloc:
if sec.name.startswith((".text", ".rodata")):
do_relocation_text(env, sec.addr, r)
elif sec.name.startswith(".data.rel.ro"):
do_relocation_data(env, sec.addr, r)
else:
assert 0, sec.name
################################################################################
# .mpy output
class MPYOutput:
def open(self, fname):
self.f = open(fname, "wb")
self.prev_base = -1
self.prev_offset = -1
def close(self):
self.f.close()
def write_bytes(self, buf):
self.f.write(buf)
def write_uint(self, val):
b = bytearray()
b.insert(0, val & 0x7F)
val >>= 7
while val:
b.insert(0, 0x80 | (val & 0x7F))
val >>= 7
self.write_bytes(b)
def write_qstr(self, s):
if s in qstrutil.static_qstr_list:
self.write_uint((qstrutil.static_qstr_list.index(s) + 1) << 1 | 1)
else:
s = bytes(s, "ascii")
self.write_uint(len(s) << 1)
self.write_bytes(s)
self.write_bytes(b"\x00")
def write_reloc(self, base, offset, dest, n):
need_offset = not (base == self.prev_base and offset == self.prev_offset + 1)
self.prev_offset = offset + n - 1
if dest <= 2:
dest = (dest << 1) | (n > 1)
else:
assert 6 <= dest <= 127
assert n == 1
dest = dest << 1 | need_offset
assert 0 <= dest <= 0xFE, dest
self.write_bytes(bytes([dest]))
if need_offset:
if base == ".text":
base = 0
elif base == ".rodata":
base = 1
self.write_uint(offset << 1 | base)
if n > 1:
self.write_uint(n)
def build_mpy(env, entry_offset, fmpy, native_qstr_vals):
# Write jump instruction to start of text
jump = env.arch.asm_jump(entry_offset)
env.full_text[: len(jump)] = jump
log(LOG_LEVEL_1, "arch: {}".format(env.arch.name))
log(LOG_LEVEL_1, "text size: {}".format(len(env.full_text)))
if len(env.full_rodata):
log(LOG_LEVEL_1, "rodata size: {}".format(len(env.full_rodata)))
log(LOG_LEVEL_1, "bss size: {}".format(len(env.full_bss)))
log(LOG_LEVEL_1, "GOT entries: {}".format(len(env.got_entries)))
# xxd(env.full_text)
out = MPYOutput()
out.open(fmpy)
# MPY: header
out.write_bytes(
bytearray(
[ord("M"), MPY_VERSION, env.arch.mpy_feature | MPY_SUB_VERSION, MP_SMALL_INT_BITS]
)
)
# MPY: n_qstr
out.write_uint(1 + len(native_qstr_vals))
# MPY: n_obj
out.write_uint(0)
# MPY: qstr table
out.write_qstr(fmpy) # filename
for q in native_qstr_vals:
out.write_qstr(q)
# MPY: object table
# <empty>
# MPY: kind/len
out.write_uint(len(env.full_text) << 3 | (MP_CODE_NATIVE_VIPER - MP_CODE_BYTECODE))
# MPY: machine code
out.write_bytes(env.full_text)
# MPY: scope_flags
scope_flags = MP_SCOPE_FLAG_VIPERRELOC
if len(env.full_rodata):
scope_flags |= MP_SCOPE_FLAG_VIPERRODATA
if len(env.full_bss):
scope_flags |= MP_SCOPE_FLAG_VIPERBSS
out.write_uint(scope_flags)
# MPY: bss and/or rodata
if len(env.full_rodata):
rodata_const_table_idx = 1
out.write_uint(len(env.full_rodata))
if len(env.full_bss):
bss_const_table_idx = 2
out.write_uint(len(env.full_bss))
if len(env.full_rodata):
out.write_bytes(env.full_rodata)
# MPY: relocation information
# See py/persistentcode.c:mp_native_relocate for meaning of the `kind` integer values.
prev_kind = None
prev_base = None
prev_offset = None
prev_n = None
for base, addr, kind in env.mpy_relocs:
if isinstance(kind, str) and kind.startswith(".text"):
kind = 0
elif isinstance(kind, str) and kind.startswith((".rodata", ".data.rel.ro")):
if env.arch.separate_rodata:
kind = rodata_const_table_idx
else:
kind = 0
elif isinstance(kind, str) and kind.startswith(".bss"):
kind = bss_const_table_idx
elif kind == "mp_native_qstr_table":
kind = 6
elif kind == "mp_native_obj_table":
kind = 7
elif kind == "mp_fun_table":
kind = 8
else:
kind = 9 + kind
assert addr % env.arch.word_size == 0, addr
offset = addr // env.arch.word_size
if kind == prev_kind and base == prev_base and offset == prev_offset + 1:
prev_n += 1
prev_offset += 1
else:
if prev_kind is not None:
out.write_reloc(prev_base, prev_offset - prev_n + 1, prev_kind, prev_n)
prev_kind = kind
prev_base = base
prev_offset = offset
prev_n = 1
if prev_kind is not None:
out.write_reloc(prev_base, prev_offset - prev_n + 1, prev_kind, prev_n)
# MPY: sentinel for end of relocations
out.write_bytes(b"\xff")
out.close()
################################################################################
# main
def do_preprocess(args):
if args.output is None:
assert args.files[0].endswith(".c")
args.output = args.files[0][:-1] + "config.h"
static_qstrs, qstr_vals = extract_qstrs(args.files)
with open(args.output, "w") as f:
print(
"#include <stdint.h>\n"
"typedef uintptr_t mp_uint_t;\n"
"typedef intptr_t mp_int_t;\n"
"typedef uintptr_t mp_off_t;",
file=f,
)
for i, q in enumerate(static_qstrs):
print("#define %s (%u)" % (q, i + 1), file=f)
for i, q in enumerate(sorted(qstr_vals)):
print("#define %s (mp_native_qstr_table[%d])" % (q, i + 1), file=f)
print("extern const uint16_t mp_native_qstr_table[];", file=f)
print("extern const mp_uint_t mp_native_obj_table[];", file=f)
def do_link(args):
if args.output is None:
assert args.files[0].endswith(".o")
args.output = args.files[0][:-1] + "mpy"
native_qstr_vals = []
if args.qstrs is not None:
with open(args.qstrs) as f:
for l in f:
m = re.match(r"#define MP_QSTR_([A-Za-z0-9_]*) \(mp_native_", l)
if m:
native_qstr_vals.append(m.group(1))
log(LOG_LEVEL_2, "qstr vals: " + ", ".join(native_qstr_vals))
env = LinkEnv(args.arch)
try:
if args.externs:
env.externs = parse_linkerscript(args.externs)
# Load object files
for fn in args.files:
with open(fn, "rb") as f:
load_object_file(env, f, fn)
if args.libs:
# Load archive info
archives = []
for item in args.libs:
archives.extend(ar_util.load_archive(item))
# List symbols to look for
syms = set(sym.name for sym in env.unresolved_syms)
# Resolve symbols from libs
lib_objs, _ = ar_util.resolve(archives, syms)
# Load extra object files from libs
for ar, obj in lib_objs:
obj_name = ar.fn + ":" + obj
log(LOG_LEVEL_2, "using " + obj_name)
with ar.open(obj) as f:
load_object_file(env, f, obj_name)
link_objects(env, len(native_qstr_vals))
build_mpy(env, env.find_addr("mpy_init"), args.output, native_qstr_vals)
except LinkError as er:
print("LinkError:", er.args[0])
sys.exit(1)
def parse_linkerscript(source):
# This extracts fixed-address symbol lists from linkerscripts, only parsing
# a small subset of all possible directives. Right now the only
# linkerscript file this is really tested against is the ESP8266's builtin
# ROM functions list ($SDK/ld/eagle.rom.addr.v6.ld).
#
# The parser should be able to handle symbol entries inside ESP-IDF's ROM
# symbol lists for the ESP32 range of MCUs as well (see *.ld files in
# $SDK/components/esp_rom/<name>/).
symbols = {}
LINE_REGEX = re.compile(
r'^(?P<weak>PROVIDE\()?' # optional weak marker start
r'(?P<symbol>[a-zA-Z_]\w*)' # symbol name
r'=0x(?P<address>[\da-fA-F]{1,8})*' # symbol address
r'(?(weak)\));$', # optional weak marker end and line terminator
re.ASCII,
)
inside_comment = False
for line in (line.strip() for line in source.readlines()):
if line.startswith('/*') and not inside_comment:
if not line.endswith('*/'):
inside_comment = True
continue
if inside_comment:
if line.endswith('*/'):
inside_comment = False
continue
if line.startswith('//'):
continue
match = LINE_REGEX.match(''.join(line.split()))
if not match:
continue
tokens = match.groupdict()
symbol = tokens['symbol']
address = int(tokens['address'], 16)
if symbol in symbols:
raise ValueError(f"Symbol {symbol} already defined")
symbols[symbol] = address
return symbols
def main():
import argparse
cmd_parser = argparse.ArgumentParser(description="Link native object files into a MPY bundle.")
cmd_parser.add_argument(
"--verbose", "-v", action="count", default=1, help="increase verbosity"
)
cmd_parser.add_argument("--arch", default="x64", help="architecture")
cmd_parser.add_argument("--preprocess", action="store_true", help="preprocess source files")
cmd_parser.add_argument("--qstrs", default=None, help="file defining additional qstrs")
cmd_parser.add_argument(
"--libs", "-l", dest="libs", action="append", help="static .a libraries to link"
)
cmd_parser.add_argument(
"--output", "-o", default=None, help="output .mpy file (default to input with .o->.mpy)"
)
cmd_parser.add_argument(
"--externs",
"-e",
type=argparse.FileType("rt"),
default=None,
help="linkerscript providing fixed-address symbols to augment symbol resolution",
)
cmd_parser.add_argument("files", nargs="+", help="input files")
args = cmd_parser.parse_args()
global log_level
log_level = args.verbose
if args.preprocess:
do_preprocess(args)
else:
do_link(args)
if __name__ == "__main__":
main()