mirror of
https://github.com/micropython/micropython.git
synced 2025-09-08 02:40:55 +02:00
The STATIC macro was introduced a very long time ago in commit
d5df6cd44a
. The original reason for this was
to have the option to define it to nothing so that all static functions
become global functions and therefore visible to certain debug tools, so
one could do function size comparison and other things.
This STATIC feature is rarely (if ever) used. And with the use of LTO and
heavy inline optimisation, analysing the size of individual functions when
they are not static is not a good representation of the size of code when
fully optimised.
So the macro does not have much use and it's simpler to just remove it.
Then you know exactly what it's doing. For example, newcomers don't have
to learn what the STATIC macro is and why it exists. Reading the code is
also less "loud" with a lowercase static.
One other minor point in favour of removing it, is that it stops bugs with
`STATIC inline`, which should always be `static inline`.
Methodology for this commit was:
1) git ls-files | egrep '\.[ch]$' | \
xargs sed -Ei "s/(^| )STATIC($| )/\1static\2/"
2) Do some manual cleanup in the diff by searching for the word STATIC in
comments and changing those back.
3) "git-grep STATIC docs/", manually fixed those cases.
4) "rg -t python STATIC", manually fixed codegen lines that used STATIC.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
84 lines
3.2 KiB
C
84 lines
3.2 KiB
C
/* This example demonstrates the following features in a native module:
|
|
- using floats
|
|
- defining additional code in Python (see test.py)
|
|
- have extra C code in a separate file (see prod.c)
|
|
*/
|
|
|
|
// Include the header file to get access to the MicroPython API
|
|
#include "py/dynruntime.h"
|
|
|
|
// Include the header for auxiliary C code for this module
|
|
#include "prod.h"
|
|
|
|
// Automatically detect if this module should include double-precision code.
|
|
// If double precision is supported by the target architecture then it can
|
|
// be used in native module regardless of what float setting the target
|
|
// MicroPython runtime uses (being none, float or double).
|
|
#if defined(__i386__) || defined(__x86_64__) || (defined(__ARM_FP) && (__ARM_FP & 8))
|
|
#define USE_DOUBLE 1
|
|
#else
|
|
#define USE_DOUBLE 0
|
|
#endif
|
|
|
|
// A function that uses the default float type configured for the current target
|
|
// This default can be overridden by specifying MICROPY_FLOAT_IMPL at the make level
|
|
static mp_obj_t add(mp_obj_t x, mp_obj_t y) {
|
|
return mp_obj_new_float(mp_obj_get_float(x) + mp_obj_get_float(y));
|
|
}
|
|
static MP_DEFINE_CONST_FUN_OBJ_2(add_obj, add);
|
|
|
|
// A function that explicitly uses single precision floats
|
|
static mp_obj_t add_f(mp_obj_t x, mp_obj_t y) {
|
|
return mp_obj_new_float_from_f(mp_obj_get_float_to_f(x) + mp_obj_get_float_to_f(y));
|
|
}
|
|
static MP_DEFINE_CONST_FUN_OBJ_2(add_f_obj, add_f);
|
|
|
|
#if USE_DOUBLE
|
|
// A function that explicitly uses double precision floats
|
|
static mp_obj_t add_d(mp_obj_t x, mp_obj_t y) {
|
|
return mp_obj_new_float_from_d(mp_obj_get_float_to_d(x) + mp_obj_get_float_to_d(y));
|
|
}
|
|
static MP_DEFINE_CONST_FUN_OBJ_2(add_d_obj, add_d);
|
|
#endif
|
|
|
|
// A function that computes the product of floats in an array.
|
|
// This function uses the most general C argument interface, which is more difficult
|
|
// to use but has access to the globals dict of the module via self->globals.
|
|
static mp_obj_t productf(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
|
|
// Check number of arguments is valid
|
|
mp_arg_check_num(n_args, n_kw, 1, 1, false);
|
|
|
|
// Extract buffer pointer and verify typecode
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_RW);
|
|
if (bufinfo.typecode != 'f') {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("expecting float array"));
|
|
}
|
|
|
|
// Compute product, store result back in first element of array
|
|
float *ptr = bufinfo.buf;
|
|
float prod = prod_array(bufinfo.len / sizeof(*ptr), ptr);
|
|
ptr[0] = prod;
|
|
|
|
return mp_const_none;
|
|
}
|
|
|
|
// This is the entry point and is called when the module is imported
|
|
mp_obj_t mpy_init(mp_obj_fun_bc_t *self, size_t n_args, size_t n_kw, mp_obj_t *args) {
|
|
// This must be first, it sets up the globals dict and other things
|
|
MP_DYNRUNTIME_INIT_ENTRY
|
|
|
|
// Make the functions available in the module's namespace
|
|
mp_store_global(MP_QSTR_add, MP_OBJ_FROM_PTR(&add_obj));
|
|
mp_store_global(MP_QSTR_add_f, MP_OBJ_FROM_PTR(&add_f_obj));
|
|
#if USE_DOUBLE
|
|
mp_store_global(MP_QSTR_add_d, MP_OBJ_FROM_PTR(&add_d_obj));
|
|
#endif
|
|
|
|
// The productf function uses the most general C argument interface
|
|
mp_store_global(MP_QSTR_productf, MP_DYNRUNTIME_MAKE_FUNCTION(productf));
|
|
|
|
// This must be last, it restores the globals dict
|
|
MP_DYNRUNTIME_INIT_EXIT
|
|
}
|