Files
micropython/stmhal/i2c.c
Damien George 04b9147e15 Add license header to (almost) all files.
Blanket wide to all .c and .h files.  Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.

Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
2014-05-03 23:27:38 +01:00

574 lines
21 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "stm32f4xx_hal.h"
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "bufhelper.h"
#include "i2c.h"
/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices. At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus. They can be initialised
/// when created, or initialised later on:
///
/// from pyb import I2C
///
/// i2c = I2C(1) # create on bus 1
/// i2c = I2C(1, I2C.MASTER) # create and init as a master
/// i2c.init(I2C.MASTER, baudrate=20000) # init as a master
/// i2c.init(I2C.SLAVE, addr=0x42) # init as a slave with given address
/// i2c.deinit() # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
/// i2c.send('abc') # send 3 bytes
/// i2c.send(0x42) # send a single byte, given by the number
/// data = i2c.recv(3) # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
/// data = bytearray(3) # create a buffer
/// i2c.recv(data) # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
/// i2c.send(b'123', timeout=2000) # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
/// i2c.init(I2C.MASTER)
/// i2c.send('123', 0x42) # send 3 bytes to slave with address 0x42
/// i2c.send(b'456', addr=0x42) # keyword for address
///
/// Master also has other methods:
///
/// i2c.is_ready(0x42) # check if slave 0x42 is ready
/// i2c.scan() # scan for slaves on the bus, returning
/// # a list of valid addresses
/// i2c.mem_read(3, 0x42, 2) # read 3 bytes from memory of slave 0x42,
/// # starting at address 2 in the slave
/// i2c.mem_write('abc', 0x42, 2, timeout=1000)
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE (1)
#if MICROPY_HW_ENABLE_I2C1
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
#endif
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
void i2c_init0(void) {
// reset the I2C1 handles
#if MICROPY_HW_ENABLE_I2C1
memset(&I2CHandle1, 0, sizeof(I2C_HandleTypeDef));
I2CHandle1.Instance = I2C1;
#endif
memset(&I2CHandle2, 0, sizeof(I2C_HandleTypeDef));
I2CHandle2.Instance = I2C2;
}
void i2c_init(I2C_HandleTypeDef *i2c) {
// init the GPIO lines
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Mode = GPIO_MODE_AF_OD;
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
GPIO_InitStructure.Pull = GPIO_NOPULL; // have external pull-up resistors on both lines
const pin_obj_t *pins[2];
if (0) {
#if MICROPY_HW_ENABLE_I2C1
} else if (i2c == &I2CHandle1) {
// X-skin: X9=PB6=SCL, X10=PB7=SDA
pins[0] = &pin_B6;
pins[1] = &pin_B7;
GPIO_InitStructure.Alternate = GPIO_AF4_I2C1;
// enable the I2C clock
__I2C1_CLK_ENABLE();
#endif
} else if (i2c == &I2CHandle2) {
// Y-skin: Y9=PB10=SCL, Y10=PB11=SDA
pins[0] = &pin_B10;
pins[1] = &pin_B11;
GPIO_InitStructure.Alternate = GPIO_AF4_I2C2;
// enable the I2C clock
__I2C2_CLK_ENABLE();
} else {
// I2C does not exist for this board (shouldn't get here, should be checked by caller)
return;
}
// init the GPIO lines
for (uint i = 0; i < 2; i++) {
GPIO_InitStructure.Pin = pins[i]->pin_mask;
HAL_GPIO_Init(pins[i]->gpio, &GPIO_InitStructure);
}
// init the I2C device
if (HAL_I2C_Init(i2c) != HAL_OK) {
// init error
// TODO should raise an exception, but this function is not necessarily going to be
// called via Python, so may not be properly wrapped in an NLR handler
printf("HardwareError: HAL_I2C_Init failed\n");
return;
}
}
void i2c_deinit(I2C_HandleTypeDef *i2c) {
HAL_I2C_DeInit(i2c);
if (0) {
#if MICROPY_HW_ENABLE_I2C1
} else if (i2c->Instance == I2C1) {
__I2C1_FORCE_RESET();
__I2C1_RELEASE_RESET();
__I2C1_CLK_DISABLE();
#endif
} else if (i2c->Instance == I2C2) {
__I2C2_FORCE_RESET();
__I2C2_RELEASE_RESET();
__I2C2_CLK_DISABLE();
}
}
/******************************************************************************/
/* Micro Python bindings */
typedef struct _pyb_i2c_obj_t {
mp_obj_base_t base;
I2C_HandleTypeDef *i2c;
} pyb_i2c_obj_t;
STATIC inline bool in_master_mode(pyb_i2c_obj_t *self) { return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS; }
STATIC const pyb_i2c_obj_t pyb_i2c_obj[] = {
#if MICROPY_HW_ENABLE_I2C1
{{&pyb_i2c_type}, &I2CHandle1},
#else
{{&pyb_i2c_type}, NULL},
#endif
{{&pyb_i2c_type}, &I2CHandle2}
};
STATIC void pyb_i2c_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_i2c_obj_t *self = self_in;
uint i2c_num;
if (self->i2c->Instance == I2C1) { i2c_num = 1; }
else { i2c_num = 2; }
if (self->i2c->State == HAL_I2C_STATE_RESET) {
print(env, "I2C(%u)", i2c_num);
} else {
if (in_master_mode(self)) {
print(env, "I2C(%u, I2C.MASTER, baudrate=%u)", i2c_num, self->i2c->Init.ClockSpeed);
} else {
print(env, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
}
}
}
/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
/// - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
/// - `addr` is the 7-bit address (only sensible for a slave)
/// - `baudrate` is the SCL clock rate (only sensible for a master)
/// - `gencall` is whether to support general call mode
STATIC const mp_arg_t pyb_i2c_init_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_addr, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
{ MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 400000} },
{ MP_QSTR_gencall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
#define PYB_I2C_INIT_NUM_ARGS ARRAY_SIZE(pyb_i2c_init_args)
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t vals[PYB_I2C_INIT_NUM_ARGS];
mp_arg_parse_all(n_args, args, kw_args, PYB_I2C_INIT_NUM_ARGS, pyb_i2c_init_args, vals);
// set the I2C configuration values
I2C_InitTypeDef *init = &self->i2c->Init;
if (vals[0].u_int == PYB_I2C_MASTER) {
// use a special address to indicate we are a master
init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
} else {
init->OwnAddress1 = (vals[1].u_int << 1) & 0xfe;
}
init->AddressingMode = I2C_ADDRESSINGMODE_7BIT;
init->ClockSpeed = MIN(vals[2].u_int, 400000);
init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
init->DutyCycle = I2C_DUTYCYCLE_16_9;
init->GeneralCallMode = vals[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
init->NoStretchMode = I2C_NOSTRETCH_DISABLED;
init->OwnAddress2 = 0xfe; // unused
// init the I2C bus
i2c_init(self->i2c);
return mp_const_none;
}
/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus. `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any). If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
STATIC mp_obj_t pyb_i2c_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// get i2c number
machine_int_t i2c_id = mp_obj_get_int(args[0]) - 1;
// check i2c number
if (!(0 <= i2c_id && i2c_id < ARRAY_SIZE(pyb_i2c_obj) && pyb_i2c_obj[i2c_id].i2c != NULL)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "I2C bus %d does not exist", i2c_id + 1));
}
// get I2C object
const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id];
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
}
return (mp_obj_t)i2c_obj;
}
STATIC mp_obj_t pyb_i2c_init(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_i2c_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init);
/// \method deinit()
/// Turn off the I2C bus.
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
pyb_i2c_obj_t *self = self_in;
i2c_deinit(self->i2c);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);
/// \method is_ready(addr)
/// Check if an I2C device responds to the given address. Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
pyb_i2c_obj_t *self = self_in;
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
machine_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;
for (int i = 0; i < 10; i++) {
HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
if (status == HAL_OK) {
return mp_const_true;
}
}
return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);
/// \method scan()
/// Scan all I2C addresses from 0x01 to 0x7f and return a list of those that respond.
/// Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
pyb_i2c_obj_t *self = self_in;
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
mp_obj_t list = mp_obj_new_list(0, NULL);
for (uint addr = 1; addr <= 127; addr++) {
for (int i = 0; i < 10; i++) {
HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 10, 200);
if (status == HAL_OK) {
mp_obj_list_append(list, mp_obj_new_int(addr));
break;
}
}
}
return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);
/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
/// - `send` is the data to send (an integer to send, or a buffer object)
/// - `addr` is the address to send to (only required in master mode)
/// - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
STATIC const mp_arg_t pyb_i2c_send_args[] = {
{ MP_QSTR_send, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_I2C_SEND_NUM_ARGS ARRAY_SIZE(pyb_i2c_send_args)
STATIC mp_obj_t pyb_i2c_send(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
// parse args
mp_arg_val_t vals[PYB_I2C_SEND_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_SEND_NUM_ARGS, pyb_i2c_send_args, vals);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
// send the data
HAL_StatusTypeDef status;
if (in_master_mode(self)) {
if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
}
machine_uint_t i2c_addr = vals[1].u_int << 1;
status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
} else {
status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
}
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_xxx_Transmit failed with code %d", status));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);
/// \method recv(recv, addr=0x00, timeout=5000)
///
/// Receive data on the bus:
///
/// - `recv` can be an integer, which is the number of bytes to receive,
/// or a mutable buffer, which will be filled with received bytes
/// - `addr` is the address to receive from (only required in master mode)
/// - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC const mp_arg_t pyb_i2c_recv_args[] = {
{ MP_QSTR_recv, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_I2C_RECV_NUM_ARGS ARRAY_SIZE(pyb_i2c_recv_args)
STATIC mp_obj_t pyb_i2c_recv(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
// parse args
mp_arg_val_t vals[PYB_I2C_RECV_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_RECV_NUM_ARGS, pyb_i2c_recv_args, vals);
// get the buffer to receive into
mp_buffer_info_t bufinfo;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
// receive the data
HAL_StatusTypeDef status;
if (in_master_mode(self)) {
if (vals[1].u_int == PYB_I2C_MASTER_ADDRESS) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "addr argument required"));
}
machine_uint_t i2c_addr = vals[1].u_int << 1;
status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, vals[2].u_int);
} else {
status = HAL_I2C_Slave_Receive(self->i2c, bufinfo.buf, bufinfo.len, vals[2].u_int);
}
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_xxx_Receive failed with code %d", status));
}
// return the received data
if (o_ret == MP_OBJ_NULL) {
return vals[0].u_obj;
} else {
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);
/// \method mem_read(data, addr, memaddr, timeout=5000)
///
/// Read from the memory of an I2C device:
///
/// - `data` can be an integer or a buffer to read into
/// - `addr` is the I2C device address
/// - `memaddr` is the memory location within the I2C device
/// - `timeout` is the timeout in milliseconds to wait for the read
///
/// Returns the read data.
/// This is only valid in master mode.
STATIC const mp_arg_t pyb_i2c_mem_read_args[] = {
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_addr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
};
#define PYB_I2C_MEM_READ_NUM_ARGS ARRAY_SIZE(pyb_i2c_mem_read_args)
STATIC mp_obj_t pyb_i2c_mem_read(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
// parse args
mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
// get the buffer to read into
mp_buffer_info_t bufinfo;
mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &bufinfo);
// get the addresses
machine_uint_t i2c_addr = vals[1].u_int << 1;
machine_uint_t mem_addr = vals[2].u_int;
HAL_StatusTypeDef status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, I2C_MEMADD_SIZE_8BIT, bufinfo.buf, bufinfo.len, vals[3].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_Mem_Read failed with code %d", status));
}
// return the read data
if (o_ret == MP_OBJ_NULL) {
return vals[0].u_obj;
} else {
return mp_obj_str_builder_end(o_ret);
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);
/// \method mem_write(data, addr, memaddr, timeout=5000)
///
/// Write to the memory of an I2C device:
///
/// - `data` can be an integer or a buffer to write from
/// - `addr` is the I2C device address
/// - `memaddr` is the memory location within the I2C device
/// - `timeout` is the timeout in milliseconds to wait for the write
///
/// Returns `None`.
/// This is only valid in master mode.
STATIC mp_obj_t pyb_i2c_mem_write(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) {
pyb_i2c_obj_t *self = args[0];
if (!in_master_mode(self)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "I2C must be a master"));
}
// parse args (same as mem_read)
mp_arg_val_t vals[PYB_I2C_MEM_READ_NUM_ARGS];
mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_I2C_MEM_READ_NUM_ARGS, pyb_i2c_mem_read_args, vals);
// get the buffer to write from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data);
// get the addresses
machine_uint_t i2c_addr = vals[1].u_int << 1;
machine_uint_t mem_addr = vals[2].u_int;
HAL_StatusTypeDef status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, I2C_MEMADD_SIZE_8BIT, bufinfo.buf, bufinfo.len, vals[3].u_int);
if (status != HAL_OK) {
// TODO really need a HardwareError object, or something
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_Exception, "HAL_I2C_Mem_Write failed with code %d", status));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);
STATIC const mp_map_elem_t pyb_i2c_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_i2c_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_i2c_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_is_ready), (mp_obj_t)&pyb_i2c_is_ready_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_scan), (mp_obj_t)&pyb_i2c_scan_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_send), (mp_obj_t)&pyb_i2c_send_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_recv), (mp_obj_t)&pyb_i2c_recv_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_mem_read), (mp_obj_t)&pyb_i2c_mem_read_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_mem_write), (mp_obj_t)&pyb_i2c_mem_write_obj },
// class constants
/// \constant MASTER - for initialising the bus to master mode
/// \constant SLAVE - for initialising the bus to slave mode
{ MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(PYB_I2C_MASTER) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SLAVE), MP_OBJ_NEW_SMALL_INT(PYB_I2C_SLAVE) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);
const mp_obj_type_t pyb_i2c_type = {
{ &mp_type_type },
.name = MP_QSTR_I2C,
.print = pyb_i2c_print,
.make_new = pyb_i2c_make_new,
.locals_dict = (mp_obj_t)&pyb_i2c_locals_dict,
};