Files
micropython/ports/mimxrt/machine_uart.c
iabdalkader 399c10dc28 mimxrt/machine_uart: Enable CTS SION so it can be read.
The new CYW43 BTHCI UART backend requires CTS pin to be defined and
readable.  This patch enables the CTS pin SION bit to allow it to be read
regardless of mux mode.

Signed-off-by: iabdalkader <i.abdalkader@gmail.com>
2025-04-22 12:39:01 +10:00

641 lines
24 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2020-2021 Damien P. George
* Copyright (c) 2021 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file is never compiled standalone, it's included directly from
// extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE.
#include "py/mphal.h"
#include "ticks.h"
#include "fsl_common.h"
#include "fsl_lpuart.h"
#include "fsl_iomuxc.h"
#include CLOCK_CONFIG_H
#include "modmachine.h"
#include "pin.h"
#define DEFAULT_UART_ID (1)
#define DEFAULT_UART_BAUDRATE (115200)
#define DEFAULT_BUFFER_SIZE (256)
#define MIN_BUFFER_SIZE (32)
#define MAX_BUFFER_SIZE (32766)
#define UART_HWCONTROL_RTS (1)
#define UART_HWCONTROL_CTS (2)
#define UART_HWCONTROL_MASK (UART_HWCONTROL_RTS | UART_HWCONTROL_CTS)
#define UART_INVERT_TX (1)
#define UART_INVERT_RX (2)
#define UART_INVERT_MASK (UART_INVERT_TX | UART_INVERT_RX)
#define UART_IRQ_RXIDLE (1)
#define UART_IRQ_TXIDLE (2)
#define MP_UART_ALLOWED_FLAGS (UART_IRQ_RXIDLE | UART_IRQ_TXIDLE)
typedef struct _machine_uart_obj_t {
mp_obj_base_t base;
struct _lpuart_handle handle;
lpuart_config_t config;
LPUART_Type *lpuart;
uint16_t timeout; // timeout waiting for first char (in ms)
uint16_t timeout_char; // timeout waiting between chars (in ms)
uint8_t id;
uint8_t invert;
uint16_t tx_status;
uint8_t *txbuf;
uint16_t txbuf_len;
uint8_t *rxbuf;
uint16_t rxbuf_len;
bool new;
uint16_t mp_irq_trigger; // user IRQ trigger mask
uint16_t mp_irq_flags; // user IRQ active IRQ flags
mp_irq_obj_t *mp_irq_obj; // user IRQ object
} machine_uart_obj_t;
typedef struct _iomux_table_t {
uint32_t muxRegister;
uint32_t muxMode;
uint32_t inputRegister;
uint32_t inputDaisy;
uint32_t configRegister;
} iomux_table_t;
static const uint8_t uart_index_table[] = MICROPY_HW_UART_INDEX;
static LPUART_Type *uart_base_ptr_table[] = LPUART_BASE_PTRS;
static const iomux_table_t iomux_table_uart[] = {
IOMUX_TABLE_UART
};
static const iomux_table_t iomux_table_uart_cts_rts[] = {
IOMUX_TABLE_UART_CTS_RTS
};
static const char *_parity_name[] = {"None", "", "0", "1"}; // Is defined as 0, 2, 3
static const char *_invert_name[] = {"None", "INV_TX", "INV_RX", "INV_TX|INV_RX"};
static const char *_flow_name[] = {"None", "RTS", "CTS", "RTS|CTS"};
#define RX (iomux_table_uart[index + 1])
#define TX (iomux_table_uart[index])
#define RTS (iomux_table_uart_cts_rts[index + 1])
#define CTS (iomux_table_uart_cts_rts[index])
bool lpuart_set_iomux(int8_t uart) {
int index = (uart - 1) * 2;
if (TX.muxRegister != 0) {
IOMUXC_SetPinMux(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister, 0U);
IOMUXC_SetPinConfig(TX.muxRegister, TX.muxMode, TX.inputRegister, TX.inputDaisy, TX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_OUT, PIN_DRIVE_6, TX.configRegister));
IOMUXC_SetPinMux(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister, 0U);
IOMUXC_SetPinConfig(RX.muxRegister, RX.muxMode, RX.inputRegister, RX.inputDaisy, RX.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_IN, PIN_DRIVE_6, RX.configRegister));
return true;
} else {
return false;
}
}
bool lpuart_set_iomux_rts(int8_t uart) {
MP_STATIC_ASSERT(MP_ARRAY_SIZE(iomux_table_uart) == MP_ARRAY_SIZE(iomux_table_uart_cts_rts));
int index = (uart - 1) * 2;
if (RTS.muxRegister != 0) {
IOMUXC_SetPinMux(RTS.muxRegister, RTS.muxMode, RTS.inputRegister, RTS.inputDaisy, RTS.configRegister, 0U);
IOMUXC_SetPinConfig(RTS.muxRegister, RTS.muxMode, RTS.inputRegister, RTS.inputDaisy, RTS.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_OUT, PIN_DRIVE_6, RTS.configRegister));
return true;
} else {
return false;
}
}
bool lpuart_set_iomux_cts(int8_t uart) {
int index = (uart - 1) * 2;
if (CTS.muxRegister != 0) {
IOMUXC_SetPinMux(CTS.muxRegister, CTS.muxMode, CTS.inputRegister, CTS.inputDaisy, CTS.configRegister, 1U);
IOMUXC_SetPinConfig(CTS.muxRegister, CTS.muxMode, CTS.inputRegister, CTS.inputDaisy, CTS.configRegister,
pin_generate_config(PIN_PULL_UP_100K, PIN_MODE_IN, PIN_DRIVE_6, CTS.configRegister));
return true;
} else {
return false;
}
}
void LPUART_UserCallback(LPUART_Type *base, lpuart_handle_t *handle, status_t status, void *userData) {
machine_uart_obj_t *self = userData;
uint16_t mp_irq_flags = 0;
if (status == kStatus_LPUART_TxIdle) {
self->tx_status = kStatus_LPUART_TxIdle;
mp_irq_flags = UART_IRQ_TXIDLE;
} else if (status == kStatus_LPUART_IdleLineDetected) {
mp_irq_flags = UART_IRQ_RXIDLE;
}
// Check the flags to see if the user handler should be called
if (self->mp_irq_trigger & mp_irq_flags) {
self->mp_irq_flags = mp_irq_flags;
mp_irq_handler(self->mp_irq_obj);
}
if (status == kStatus_LPUART_RxRingBufferOverrun) {
; // Ringbuffer full, deassert RTS if flow control is enabled
}
}
static void machine_uart_ensure_active(machine_uart_obj_t *uart) {
if (uart->lpuart->CTRL == 0) {
mp_raise_OSError(EIO);
}
}
void machine_uart_set_baudrate(mp_obj_t uart_in, uint32_t baudrate) {
machine_uart_obj_t *uart = MP_OBJ_TO_PTR(uart_in);
#if defined(MIMXRT117x_SERIES)
// Use the Lpuart1 clock value, which is set for All UART devices.
LPUART_SetBaudRate(uart->lpuart, baudrate, CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart1));
#else
LPUART_SetBaudRate(uart->lpuart, baudrate, CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot));
#endif
}
/******************************************************************************/
// MicroPython bindings for UART
#define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \
{ MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INVERT_TX) }, \
{ MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INVERT_RX) }, \
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) }, \
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \
{ MP_ROM_QSTR(MP_QSTR_IRQ_TXIDLE), MP_ROM_INT(UART_IRQ_TXIDLE) }, \
static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, flow=%s, "
"rxbuf=%d, txbuf=%d, timeout=%u, timeout_char=%u, invert=%s, irq=%d)",
self->id, self->config.baudRate_Bps, 8 - self->config.dataBitsCount,
_parity_name[self->config.parityMode], self->config.stopBitCount + 1,
_flow_name[(self->config.enableTxCTS << 1) | self->config.enableRxRTS],
self->rxbuf_len, self->txbuf_len, self->timeout, self->timeout_char,
_invert_name[self->invert], self->mp_irq_trigger);
}
static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_flow,
ARG_timeout, ARG_timeout_char, ARG_invert, ARG_rxbuf, ARG_txbuf};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_INT(-1)} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1 } },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// Parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Set baudrate if configured.
if (args[ARG_baudrate].u_int > 0) {
self->config.baudRate_Bps = args[ARG_baudrate].u_int;
}
// Set bits if configured.
if (args[ARG_bits].u_int > 0) {
self->config.dataBitsCount = 8 - args[ARG_bits].u_int;
}
// Set parity if configured.
if (args[ARG_parity].u_obj != MP_OBJ_NEW_SMALL_INT(-1)) {
if (args[ARG_parity].u_obj == mp_const_none) {
self->config.parityMode = kLPUART_ParityDisabled;
} else if (mp_obj_get_int(args[ARG_parity].u_obj) & 1) {
self->config.parityMode = kLPUART_ParityOdd;
} else {
self->config.parityMode = kLPUART_ParityEven;
}
}
// Set stop bits if configured.
if (args[ARG_stop].u_int > 0) {
self->config.stopBitCount = args[ARG_stop].u_int - 1;
}
// Set flow if configured.
if (args[ARG_flow].u_int >= 0) {
if (args[ARG_flow].u_int & ~UART_HWCONTROL_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("bad flow mask"));
}
if (args[ARG_flow].u_int & UART_HWCONTROL_RTS) {
if (!lpuart_set_iomux_rts(uart_index_table[self->id])) {
mp_raise_ValueError(MP_ERROR_TEXT("rts not available"));
}
self->config.enableRxRTS = true;
}
if (args[ARG_flow].u_int & UART_HWCONTROL_CTS) {
if (!lpuart_set_iomux_cts(uart_index_table[self->id])) {
mp_raise_ValueError(MP_ERROR_TEXT("cts not available"));
}
self->config.enableTxCTS = true;
}
}
// Set timeout if configured.
if (args[ARG_timeout].u_int >= 0) {
self->timeout = args[ARG_timeout].u_int;
}
// Set timeout_char if configured.
if (args[ARG_timeout_char].u_int >= 0) {
self->timeout_char = args[ARG_timeout_char].u_int;
}
// Set line inversion if configured.
if (args[ARG_invert].u_int >= 0) {
if (args[ARG_invert].u_int & ~UART_INVERT_MASK) {
mp_raise_ValueError(MP_ERROR_TEXT("bad inversion mask"));
}
self->invert = args[ARG_invert].u_int;
}
self->tx_status = kStatus_LPUART_TxIdle;
self->config.enableTx = true;
self->config.enableRx = true;
// Set the RX buffer size if configured.
if (args[ARG_rxbuf].u_int > 0) {
size_t rxbuf_len = args[ARG_rxbuf].u_int;
if (rxbuf_len < MIN_BUFFER_SIZE) {
rxbuf_len = MIN_BUFFER_SIZE;
} else if (rxbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("rxbuf too large"));
}
// Force re-allocting of the buffer if the size changed
if (rxbuf_len != self->rxbuf_len) {
self->rxbuf = NULL;
self->rxbuf_len = rxbuf_len;
}
}
// Set the TX buffer size if configured.
if (args[ARG_txbuf].u_int > 0) {
size_t txbuf_len = args[ARG_txbuf].u_int;
if (txbuf_len < MIN_BUFFER_SIZE) {
txbuf_len = MIN_BUFFER_SIZE;
} else if (txbuf_len > MAX_BUFFER_SIZE) {
mp_raise_ValueError(MP_ERROR_TEXT("txbuf too large"));
}
// Force re-allocting of the buffer if the size is changed
if (txbuf_len != self->txbuf_len) {
self->txbuf = NULL;
self->txbuf_len = txbuf_len;
}
}
// Initialise the UART peripheral if any arguments given, or it was not initialised previously.
if (n_args > 0 || kw_args->used > 0 || self->new) {
self->new = false;
// may be obsolete
if (self->config.baudRate_Bps == 0) {
self->config.baudRate_Bps = DEFAULT_UART_BAUDRATE;
}
// Make sure timeout_char is at least as long as a whole character (13 bits to be safe).
uint32_t min_timeout_char = 13000 / self->config.baudRate_Bps + 1;
if (self->timeout_char < min_timeout_char) {
self->timeout_char = min_timeout_char;
}
self->config.rxIdleType = kLPUART_IdleTypeStartBit;
self->config.rxIdleConfig = kLPUART_IdleCharacter4;
#if defined(MIMXRT117x_SERIES)
// Use the Lpuart1 clock value, which is set for All UART devices.
LPUART_Init(self->lpuart, &self->config, CLOCK_GetRootClockFreq(kCLOCK_Root_Lpuart1));
#else
LPUART_Init(self->lpuart, &self->config, CLOCK_GetClockRootFreq(kCLOCK_UartClkRoot));
#endif
LPUART_TransferCreateHandle(self->lpuart, &self->handle, LPUART_UserCallback, self);
if (self->rxbuf == NULL) {
self->rxbuf = m_new(uint8_t, self->rxbuf_len + 1);
}
LPUART_TransferStartRingBuffer(self->lpuart, &self->handle, self->rxbuf, self->rxbuf_len);
if (self->txbuf == NULL) {
self->txbuf = m_new(uint8_t, self->txbuf_len); // Allocate the TX buffer.
}
#if MICROPY_PY_MACHINE_UART_IRQ
LPUART_EnableInterrupts(self->lpuart, kLPUART_IdleLineInterruptEnable);
#endif
// The Uart supports inverting, but not the fsl API, so it has to coded directly
// And it has to be done after LPUART_Init.
if (self->invert & UART_INVERT_RX) {
LPUART_EnableRx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_RXINV_SHIFT;
LPUART_EnableRx(self->lpuart, true);
}
if (self->invert & UART_INVERT_TX) {
LPUART_EnableTx(self->lpuart, false);
self->lpuart->CTRL |= 1 << LPUART_CTRL_TXINV_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
// Send long break; drop that code for a shorter break duration
LPUART_EnableTx(self->lpuart, false);
self->lpuart->STAT |= 1 << LPUART_STAT_BRK13_SHIFT;
LPUART_EnableTx(self->lpuart, true);
}
}
static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 0, MP_OBJ_FUN_ARGS_MAX, true);
// Get UART bus.
int uart_id;
if (n_args > 0) {
uart_id = mp_obj_get_int(args[0]);
n_args--;
args++;
} else {
uart_id = DEFAULT_UART_ID;
}
if (uart_id < 0 || uart_id > MICROPY_HW_UART_NUM || uart_index_table[uart_id] == 0) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) doesn't exist"), uart_id);
}
// Create the UART object and fill it with defaults.
uint8_t uart_hw_id = uart_index_table[uart_id]; // the hw uart number 1..n
machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type);
self->id = uart_id;
self->lpuart = uart_base_ptr_table[uart_hw_id];
self->invert = false;
self->timeout = 1;
self->timeout_char = 1;
self->rxbuf = NULL;
self->rxbuf_len = DEFAULT_BUFFER_SIZE;
self->txbuf = NULL;
self->txbuf_len = DEFAULT_BUFFER_SIZE;
self->new = true;
self->mp_irq_obj = NULL;
self->mp_irq_trigger = 0;
LPUART_GetDefaultConfig(&self->config);
// Configure board-specific pin MUX based on the hardware device number.
bool uart_present = lpuart_set_iomux(uart_hw_id);
if (uart_present) {
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
mp_machine_uart_init_helper(self, n_args, args, &kw_args);
return MP_OBJ_FROM_PTR(self);
} else {
return mp_const_none;
}
}
// uart.deinit()
static void mp_machine_uart_deinit(machine_uart_obj_t *self) {
LPUART_SoftwareReset(self->lpuart);
}
static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) {
machine_uart_ensure_active(self);
size_t count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
return count;
}
static bool mp_machine_uart_txdone(machine_uart_obj_t *self) {
return self->tx_status == kStatus_LPUART_TxIdle;
}
static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) {
machine_uart_ensure_active(self);
self->lpuart->CTRL |= 1 << LPUART_CTRL_SBK_SHIFT; // Set SBK bit
self->lpuart->CTRL &= ~LPUART_CTRL_SBK_MASK; // Clear SBK bit
}
// Reset all defined UARTs
void machine_uart_deinit_all(void) {
for (int i = 0; i < MICROPY_HW_UART_NUM; i++) {
if (uart_index_table[i] != 0) {
LPUART_SoftwareReset(uart_base_ptr_table[uart_index_table[i]]);
}
}
}
#if MICROPY_PY_MACHINE_UART_IRQ
static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
self->mp_irq_trigger = new_trigger;
return 0;
}
static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (info_type == MP_IRQ_INFO_FLAGS) {
return self->mp_irq_flags;
} else if (info_type == MP_IRQ_INFO_TRIGGERS) {
return self->mp_irq_trigger;
}
return 0;
}
static const mp_irq_methods_t uart_irq_methods = {
.trigger = uart_irq_trigger,
.info = uart_irq_info,
};
static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) {
if (self->mp_irq_obj == NULL) {
self->mp_irq_trigger = 0;
self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self));
}
if (any_args) {
// Check the handler
mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj;
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable"));
}
// Check the trigger
mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int;
mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS;
if (trigger != 0 && not_supported) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%04x unsupported"), not_supported);
}
self->mp_irq_obj->handler = handler;
self->mp_irq_obj->ishard = args[MP_IRQ_ARG_INIT_hard].u_bool;
self->mp_irq_trigger = trigger;
}
return self->mp_irq_obj;
}
#endif
static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
uint64_t t = ticks_us64() + (uint64_t)self->timeout * 1000;
uint64_t timeout_char_us = (uint64_t)self->timeout_char * 1000;
lpuart_transfer_t xfer;
uint8_t *dest = buf_in;
size_t avail;
size_t nget;
machine_uart_ensure_active(self);
for (size_t received = 0; received < size;) {
// Wait for the first/next character.
while ((avail = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle)) <= 0) {
if (ticks_us64() > t) { // timed out
if (received <= 0) {
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
} else {
return received;
}
}
MICROPY_EVENT_POLL_HOOK
}
// Get as many bytes as possible to meet the need.
nget = avail < (size - received) ? avail : size - received;
xfer.data = dest + received;
xfer.dataSize = nget;
LPUART_TransferReceiveNonBlocking(self->lpuart, &self->handle, &xfer, NULL);
received += nget;
t = ticks_us64() + timeout_char_us;
}
return size;
}
static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in);
lpuart_transfer_t xfer;
uint64_t t;
size_t remaining = size;
size_t offset = 0;
uint8_t fifo_size = FSL_FEATURE_LPUART_FIFO_SIZEn(0);
machine_uart_ensure_active(self);
// First check if a previous transfer is still ongoing,
// then wait at least the number of remaining character times.
t = ticks_us64() + (uint64_t)(self->handle.txDataSize + fifo_size) * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
if (ticks_us64() > t) { // timed out, hard error
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
}
MICROPY_EVENT_POLL_HOOK
}
// Check if the first part has to be sent semi-blocking.
if (size > self->txbuf_len) {
// Send the first block.
xfer.data = (uint8_t *)buf_in;
offset = xfer.dataSize = size - self->txbuf_len;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
// Wait at least the number of character times for this chunk.
t = ticks_us64() + (uint64_t)xfer.dataSize * (13000000 / self->config.baudRate_Bps + 1000);
while (self->tx_status != kStatus_LPUART_TxIdle) {
// Wait for the first/next character to be sent.
if (ticks_us64() > t) { // timed out
if (self->handle.txDataSize >= size) {
*errcode = MP_ETIMEDOUT;
return MP_STREAM_ERROR;
} else {
return size - self->handle.txDataSize;
}
}
MICROPY_EVENT_POLL_HOOK
}
remaining = self->txbuf_len;
} else {
// The data fits into the tx buffer.
offset = 0;
remaining = size;
}
// Send the remaining data without waiting for completion.
memcpy(self->txbuf, (uint8_t *)buf_in + offset, remaining);
xfer.data = self->txbuf;
xfer.dataSize = remaining;
self->tx_status = kStatus_LPUART_TxBusy;
LPUART_TransferSendNonBlocking(self->lpuart, &self->handle, &xfer);
return size;
}
static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_uart_obj_t *self = self_in;
mp_uint_t ret;
if (request == MP_STREAM_POLL) {
machine_uart_ensure_active(self);
uintptr_t flags = arg;
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
uint32_t count;
count = LPUART_TransferGetRxRingBufferLength(self->lpuart, &self->handle);
if (count > 0) {
ret |= MP_STREAM_POLL_RD;
}
}
if ((flags & MP_STREAM_POLL_WR) && (self->tx_status == kStatus_LPUART_TxIdle)) {
ret |= MP_STREAM_POLL_WR;
}
} else if (request == MP_STREAM_FLUSH) {
// The timeout is estimated using the buffer size and the baudrate.
// Take the worst case assumptions at 13 bit symbol size times 2.
uint64_t timeout = (uint64_t)(3 + self->txbuf_len) * 13000000ll * 2 /
self->config.baudRate_Bps + ticks_us64();
do {
if (mp_machine_uart_txdone(self)) {
return 0;
}
MICROPY_EVENT_POLL_HOOK
} while (ticks_us64() < timeout);
*errcode = MP_ETIMEDOUT;
ret = MP_STREAM_ERROR;
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}