Files
micropython/py/formatfloat.c
Yoctopuce dev dbbaa959c8
Some checks failed
JavaScript code lint and formatting with Biome / eslint (push) Has been cancelled
Check code formatting / code-formatting (push) Has been cancelled
Check spelling with codespell / codespell (push) Has been cancelled
Build docs / build (push) Has been cancelled
Check examples / embedding (push) Has been cancelled
Package mpremote / build (push) Has been cancelled
.mpy file format and tools / test (push) Has been cancelled
Build ports metadata / build (push) Has been cancelled
alif port / build_alif (alif_ae3_build) (push) Has been cancelled
cc3200 port / build (push) Has been cancelled
esp32 port / build_idf (esp32_build_cmod_spiram_s2) (push) Has been cancelled
esp32 port / build_idf (esp32_build_s3_c3) (push) Has been cancelled
esp8266 port / build (push) Has been cancelled
mimxrt port / build (push) Has been cancelled
nrf port / build (push) Has been cancelled
powerpc port / build (push) Has been cancelled
qemu port / build_and_test_arm (bigendian) (push) Has been cancelled
qemu port / build_and_test_arm (sabrelite) (push) Has been cancelled
qemu port / build_and_test_arm (thumb) (push) Has been cancelled
qemu port / build_and_test_rv32 (push) Has been cancelled
renesas-ra port / build_renesas_ra_board (push) Has been cancelled
rp2 port / build (push) Has been cancelled
samd port / build (push) Has been cancelled
stm32 port / build_stm32 (stm32_misc_build) (push) Has been cancelled
stm32 port / build_stm32 (stm32_nucleo_build) (push) Has been cancelled
stm32 port / build_stm32 (stm32_pyb_build) (push) Has been cancelled
unix port / minimal (push) Has been cancelled
unix port / reproducible (push) Has been cancelled
unix port / standard (push) Has been cancelled
unix port / standard_v2 (push) Has been cancelled
unix port / coverage (push) Has been cancelled
unix port / coverage_32bit (push) Has been cancelled
unix port / nanbox (push) Has been cancelled
unix port / longlong (push) Has been cancelled
unix port / float (push) Has been cancelled
unix port / gil_enabled (push) Has been cancelled
unix port / stackless_clang (push) Has been cancelled
unix port / float_clang (push) Has been cancelled
unix port / settrace_stackless (push) Has been cancelled
unix port / macos (push) Has been cancelled
unix port / qemu_mips (push) Has been cancelled
unix port / qemu_arm (push) Has been cancelled
unix port / qemu_riscv64 (push) Has been cancelled
unix port / sanitize_address (push) Has been cancelled
unix port / sanitize_undefined (push) Has been cancelled
webassembly port / build (push) Has been cancelled
windows port / build-vs (Debug, x64, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Debug, x64, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Debug, x86, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Debug, x86, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, x64, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, x64, dev, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, x64, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, x64, standard, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, x64, standard, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, x64, standard, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, x86, dev, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, x86, dev, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, x86, dev, 2022, [17, 18)) (push) Has been cancelled
windows port / build-vs (Release, x86, standard, 2017, [15, 16)) (push) Has been cancelled
windows port / build-vs (Release, x86, standard, 2019, [16, 17)) (push) Has been cancelled
windows port / build-vs (Release, x86, standard, 2022, [17, 18)) (push) Has been cancelled
windows port / build-mingw (i686, mingw32, dev) (push) Has been cancelled
windows port / build-mingw (i686, mingw32, standard) (push) Has been cancelled
windows port / build-mingw (x86_64, mingw64, dev) (push) Has been cancelled
windows port / build-mingw (x86_64, mingw64, standard) (push) Has been cancelled
windows port / cross-build-on-linux (push) Has been cancelled
zephyr port / build (push) Has been cancelled
Python code lint and formatting with ruff / ruff (push) Has been cancelled
py/formatfloat: Improve accuracy of float formatting code.
Following discussions in PR #16666, this commit updates the float
formatting code to improve the `repr` reversibility, i.e. the percentage of
valid floating point numbers that do parse back to the same number when
formatted by `repr` (in CPython it's 100%).

This new code offers a choice of 3 float conversion methods, depending on
the desired tradeoff between code size and conversion precision:

- BASIC method is the smallest code footprint

- APPROX method uses an iterative method to approximate the exact
  representation, which is a bit slower but but does not have a big impact
  on code size.  It provides `repr` reversibility on >99.8% of the cases in
  double precision, and on >98.5% in single precision (except with REPR_C,
  where reversibility is 100% as the last two bits are not taken into
  account).

- EXACT method uses higher-precision floats during conversion, which
  provides perfect results but has a higher impact on code size.  It is
  faster than APPROX method, and faster than the CPython equivalent
  implementation.  It is however not available on all compilers when using
  FLOAT_IMPL_DOUBLE.

Here is the table comparing the impact of the three conversion methods on
code footprint on PYBV10 (using single-precision floats) and reversibility
rate for both single-precision and double-precision floats.  The table
includes current situation as a baseline for the comparison:

              PYBV10  REPR_C   FLOAT  DOUBLE
    current = 364688   12.9%   27.6%   37.9%
    basic   = 364812   85.6%   60.5%   85.7%
    approx  = 365080  100.0%   98.5%   99.8%
    exact   = 366408  100.0%  100.0%  100.0%

Signed-off-by: Yoctopuce dev <dev@yoctopuce.com>
2025-08-01 00:47:33 +10:00

570 lines
20 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
#include "py/misc.h"
#if MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE
#include <assert.h>
#include <stdlib.h>
#include <stdint.h>
#include <math.h>
#include "py/formatfloat.h"
#include "py/parsenum.h"
/***********************************************************************
Routine for converting a arbitrary floating
point number into a string.
The code in this function was inspired from Dave Hylands's previous
version, which was itself inspired from Fred Bayer's pdouble.c.
The original code can be found in https://github.com/dhylands/format-float
***********************************************************************/
// Float formatting debug code is intended for use in ports/unix only,
// as it uses the libc float printing function as a reference.
#define DEBUG_FLOAT_FORMATTING 0
#if DEBUG_FLOAT_FORMATTING
#define DEBUG_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
#if MICROPY_FLOAT_FORMAT_IMPL == MICROPY_FLOAT_FORMAT_IMPL_EXACT || MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define MP_FFUINT_FMT "%lu"
#else
#define MP_FFUINT_FMT "%u"
#endif
static inline int fp_expval(mp_float_t x) {
mp_float_union_t fb = { x };
return (int)fb.p.exp - MP_FLOAT_EXP_OFFSET;
}
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
static inline int fp_isless1(mp_float_t x) {
return x < 1.0;
}
static inline int fp_iszero(mp_float_t x) {
return x == 0.0;
}
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
static inline int fp_equal(mp_float_t x, mp_float_t y) {
return x == y;
}
#else
static inline mp_float_t fp_diff(mp_float_t x, mp_float_t y) {
return x - y;
}
#endif
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
// The functions below are roughly equivalent to the ones above,
// but they are optimized to reduce code footprint by skipping
// handling for special values such as nan, inf, +/-0.0
// for ports where FP support is done in software.
//
// They also take into account lost bits of REPR_C as needed.
static inline int fp_isless1(mp_float_t x) {
mp_float_union_t fb = { x };
return fb.i < 0x3f800000;
}
static inline int fp_iszero(mp_float_t x) {
mp_float_union_t x_check = { x };
return !x_check.i; // this is valid for REPR_C as well
}
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
static inline int fp_equal(mp_float_t x, mp_float_t y) {
mp_float_union_t x_check = { x };
mp_float_union_t y_check = { y };
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
return (x_check.i & ~3) == (y_check.i & ~3);
#else
return x_check.i == y_check.i;
#endif
}
#else
static inline mp_float_t fp_diff(mp_float_t x, mp_float_t y) {
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
mp_float_union_t x_check = { x };
mp_float_union_t y_check = { y };
x_check.i &= ~3;
y_check.i &= ~3;
return x_check.f - y_check.f;
#else
return x - y;
#endif
}
#endif
#endif
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
#define FPMIN_BUF_SIZE 6 // +9e+99
#define MAX_MANTISSA_DIGITS (9)
#define SAFE_MANTISSA_DIGITS (6)
#elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE
#define FPMIN_BUF_SIZE 7 // +9e+199
#define MAX_MANTISSA_DIGITS (19)
#define SAFE_MANTISSA_DIGITS (16)
#endif
// Internal formatting flags
#define FMT_MODE_E 0x01 // render using scientific notation (%e)
#define FMT_MODE_G 0x02 // render using general format (%g)
#define FMT_MODE_F 0x04 // render using using expanded fixed-point format (%f)
#define FMT_E_CASE 0x20 // don't change this value (used for case conversion!)
static char *mp_prepend_zeros(char *s, int cnt) {
*s++ = '0';
*s++ = '.';
while (cnt > 0) {
*s++ = '0';
cnt--;
}
return s;
}
// Helper to convert a decimal mantissa (provided as an mp_large_float_uint_t) to string
static int mp_format_mantissa(mp_large_float_uint_t mantissa, mp_large_float_uint_t mantissa_cap, char *buf, char *s,
int num_digits, int max_exp_zeros, int trailing_zeros, int dec, int e, int fmt_flags) {
DEBUG_PRINTF("mantissa=" MP_FFUINT_FMT " exp=%d (cap=" MP_FFUINT_FMT "):\n", mantissa, e, mantissa_cap);
if (mantissa) {
// If rounding/searching created an extra digit or removed too many, fix mantissa first
if (mantissa >= mantissa_cap) {
if (fmt_flags & FMT_MODE_F) {
assert(e >= 0);
num_digits++;
dec++;
} else {
mantissa /= 10;
e++;
}
}
}
// When 'g' format is used, replace small exponents by explicit zeros
if ((fmt_flags & FMT_MODE_G) && e != 0) {
if (e >= 0) {
// If 0 < e < max_exp_zeros, expand positive exponent into trailing zeros
if (e < max_exp_zeros) {
dec += e;
if (dec >= num_digits) {
trailing_zeros = dec - (num_digits - 1);
}
e = 0;
}
} else {
// If -4 <= e < 0, expand negative exponent without losing significant digits
if (e >= -4) {
int cnt = 0;
while (e < 0 && !(mantissa % 10)) {
mantissa /= 10;
cnt++;
e++;
}
num_digits -= cnt;
s = mp_prepend_zeros(s, cnt - e - 1);
dec = 255;
e = 0;
}
}
}
// Convert the integer mantissa to string
for (int digit = num_digits - 1; digit >= 0; digit--) {
int digit_ofs = (digit > dec ? digit + 1 : digit);
s[digit_ofs] = '0' + (int)(mantissa % 10);
mantissa /= 10;
}
int dot = (dec >= 255);
if (dec + 1 < num_digits) {
dot = 1;
s++;
s[dec] = '.';
}
s += num_digits;
#if DEBUG_FLOAT_FORMATTING
*s = 0;
DEBUG_PRINTF(" = %s exp=%d num_digits=%d zeros=%d dec=%d\n", buf, e, num_digits, trailing_zeros, dec);
#endif
// Append or remove trailing zeros, as required by format
if (trailing_zeros) {
dec -= num_digits - 1;
while (trailing_zeros--) {
if (!dec--) {
*s++ = '.';
dot = 1;
}
*s++ = '0';
}
}
if (fmt_flags & FMT_MODE_G) {
// 'g' format requires to remove trailing zeros after decimal point
if (dot) {
while (s[-1] == '0') {
s--;
}
if (s[-1] == '.') {
s--;
}
}
}
// Append the exponent if needed
if (((e != 0) || (fmt_flags & FMT_MODE_E)) && !(fmt_flags & FMT_MODE_F)) {
*s++ = 'E' | (fmt_flags & FMT_E_CASE);
if (e >= 0) {
*s++ = '+';
} else {
*s++ = '-';
e = -e;
}
if (e >= 100) {
*s++ = '0' + (e / 100);
}
*s++ = '0' + ((e / 10) % 10);
*s++ = '0' + (e % 10);
}
*s = '\0';
DEBUG_PRINTF(" ===> %s\n", buf);
return s - buf;
}
// minimal value expected for buf_size, to avoid checking everywhere for overflow
#define MIN_BUF_SIZE (MAX_MANTISSA_DIGITS + 10)
int mp_format_float(mp_float_t f_entry, char *buf_entry, size_t buf_size, char fmt, int prec, char sign) {
assert(buf_size >= MIN_BUF_SIZE);
// Handle sign
mp_float_t f = f_entry;
char *buf = buf_entry;
if (signbit(f_entry) && !isnan(f_entry)) {
f = -f;
sign = '-';
}
if (sign) {
*buf++ = sign;
buf_size--;
}
// Handle inf/nan
char uc = fmt & 0x20;
{
char *s = buf;
if (isinf(f)) {
*s++ = 'I' ^ uc;
*s++ = 'N' ^ uc;
*s++ = 'F' ^ uc;
goto ret;
} else if (isnan(f)) {
*s++ = 'N' ^ uc;
*s++ = 'A' ^ uc;
*s++ = 'N' ^ uc;
ret:
*s = '\0';
return s - buf_entry;
}
}
// Decode format character
int fmt_flags = (unsigned char)uc; // setup FMT_E_CASE, clear all other bits
char lofmt = (char)(fmt | 0x20); // fmt in lowercase
if (lofmt == 'f') {
fmt_flags |= FMT_MODE_F;
} else if (lofmt == 'g') {
fmt_flags |= FMT_MODE_G;
} else {
fmt_flags |= FMT_MODE_E;
}
// When precision is unspecified, default to 6
if (prec < 0) {
prec = 6;
}
// Use high precision for `repr`, but switch to exponent mode
// after 16 digits in any case to match CPython behaviour
int max_exp_zeros = (prec < (int)buf_size - 3 ? prec : (int)buf_size - 3);
if (prec == MP_FLOAT_REPR_PREC) {
prec = MAX_MANTISSA_DIGITS;
max_exp_zeros = 16;
}
// Precompute the exact decimal exponent of f, such that
// abs(e) is lower bound on abs(power of 10 exponent).
int e = 0;
if (!fp_iszero(f)) {
// Approximate power of 10 exponent from binary exponent.
e = (int)(fp_expval(f) * MICROPY_FLOAT_CONST(0.3010299956639812)); // 1/log2(10).
int positive_exp = !fp_isless1(f);
mp_float_t u_base = (mp_float_t)mp_decimal_exp((mp_large_float_t)1.0, e + positive_exp);
while ((f >= u_base) == positive_exp) {
e += (positive_exp ? 1 : -1);
u_base = (mp_float_t)mp_decimal_exp((mp_large_float_t)1.0, e + positive_exp);
}
}
// For 'e' format, prec is # digits after the decimal
// For 'f' format, prec is # digits after the decimal
// For 'g' format, prec is the max number of significant digits
//
// For 'e' & 'g' format, there will be a single digit before the decimal
// For 'f' format, zeros must be expanded instead of using an exponent.
// Make sure there is enough room in the buffer for them, or switch to format 'g'.
if ((fmt_flags & FMT_MODE_F) && e > 0) {
int req_size = e + prec + 2;
if (req_size > (int)buf_size) {
fmt_flags ^= FMT_MODE_F;
fmt_flags |= FMT_MODE_G;
prec++;
}
}
// To work independently of the format, we precompute:
// - the max number of significant digits to produce
// - the number of leading zeros to prepend (mode f only)
// - the number of trailing zeros to append
int max_digits = prec;
int lead_zeros = 0;
int trail_zeros = 0;
if (fmt_flags & FMT_MODE_F) {
if (max_digits > (int)buf_size - 3) {
// cannot satisfy requested number of decimals given buf_size, sorry
max_digits = (int)buf_size - 3;
}
if (e < 0) {
if (max_digits > 2 && e < -2) {
// Insert explicit leading zeros
lead_zeros = (-e < max_digits ? -e : max_digits) - 2;
max_digits -= lead_zeros;
} else {
max_digits++;
}
} else {
max_digits += e + 1;
}
} else {
if (!(fmt_flags & FMT_MODE_G) || max_digits == 0) {
max_digits++;
}
}
if (max_digits > MAX_MANTISSA_DIGITS) {
// use trailing zeros to avoid overflowing the mantissa
trail_zeros = max_digits - MAX_MANTISSA_DIGITS;
max_digits = MAX_MANTISSA_DIGITS;
}
int overhead = (fmt_flags & FMT_MODE_F ? 3 : FPMIN_BUF_SIZE + 1);
if (trail_zeros > (int)buf_size - max_digits - overhead) {
// cannot satisfy requested number of decimals given buf_size, sorry
trail_zeros = (int)buf_size - max_digits - overhead;
}
// When the caller asks for more precision than available for sure,
// Look for a shorter (rounded) representation first, and only dig
// into more digits if there is no short representation.
int num_digits = (SAFE_MANTISSA_DIGITS < max_digits ? SAFE_MANTISSA_DIGITS : max_digits);
try_again:
;
char *s = buf;
int extra_zeros = trail_zeros + (max_digits - num_digits);
int decexp;
int dec = 0;
if (fp_iszero(f)) {
// no need for scaling 0.0
decexp = 0;
} else if (fmt_flags & FMT_MODE_F) {
decexp = num_digits - 1;
if (e < 0) {
// Negative exponent: we keep a single leading zero in the mantissa,
// as using more would waste precious digits needed for accuracy.
if (lead_zeros > 0) {
// We are using leading zeros
s = mp_prepend_zeros(s, lead_zeros);
decexp += lead_zeros + 1;
dec = 255; // no decimal dot
} else {
// Small negative exponent, work directly on the mantissa
dec = 0;
}
} else {
// Positive exponent: we will add trailing zeros separately
decexp -= e;
dec = e;
}
} else {
decexp = num_digits - e - 1;
}
DEBUG_PRINTF("input=%.19g e=%d fmt=%c max_d=%d num_d=%d decexp=%d dec=%d l0=%d r0=%d\n",
(double)f, e, lofmt, max_digits, num_digits, decexp, dec, lead_zeros, extra_zeros);
// At this point,
// - buf points to beginning of output buffer for the unsigned representation
// - num_digits == the number of mantissa digits to add
// - (dec + 1) == the number of digits to print before adding a decimal point
// - decexp == the power of 10 exponent to apply to f to get the decimal mantissa
// - e == the power of 10 exponent to append ('e' or 'g' format)
mp_large_float_uint_t mantissa_cap = 10;
for (int n = 1; n < num_digits; n++) {
mantissa_cap *= 10;
}
// Build the decimal mantissa into a large uint
mp_large_float_uint_t mantissa = 1;
if (sizeof(mp_large_float_t) == sizeof(mp_float_t) && num_digits > SAFE_MANTISSA_DIGITS && decexp > 1) {
// if we don't have large floats, use integer multiply to produce the last digits
if (num_digits > SAFE_MANTISSA_DIGITS + 1 && decexp > 2) {
mantissa = 100;
decexp -= 2;
} else {
mantissa = 10;
decexp -= 1;
}
}
mp_large_float_t mantissa_f = mp_decimal_exp((mp_large_float_t)f, decexp);
mantissa *= (mp_large_float_uint_t)(mantissa_f + (mp_large_float_t)0.5);
DEBUG_PRINTF("input=%.19g fmt=%c num_digits=%d dec=%d mantissa=" MP_FFUINT_FMT " r0=%d\n", (double)f, lofmt, num_digits, dec, mantissa, extra_zeros);
// Finally convert the decimal mantissa to a floating-point string, according to formatting rules
int reprlen = mp_format_mantissa(mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
assert(reprlen + 1 <= (int)buf_size);
#if MICROPY_FLOAT_FORMAT_IMPL != MICROPY_FLOAT_FORMAT_IMPL_APPROX
if (num_digits < max_digits) {
// The initial precision might not be sufficient for an exact representation
// for all numbers. If the result is not exact, restart using next precision.
// parse the resulting number and compare against the original
mp_float_t check;
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
mp_parse_float_internal(buf, reprlen, &check);
if (!fp_equal(check, f)) {
num_digits++;
DEBUG_PRINTF("Not perfect, retry using more digits (%d)\n", num_digits);
goto try_again;
}
}
#else
// The initial decimal mantissa might not have been be completely accurate due
// to the previous loating point operations. The best way to verify this is to
// parse the resulting number and compare against the original
mp_float_t check;
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
mp_parse_float_internal(buf, reprlen, &check);
mp_float_t diff = fp_diff(check, f);
mp_float_t best_diff = diff;
mp_large_float_uint_t best_mantissa = mantissa;
if (fp_iszero(diff)) {
// we have a perfect match
DEBUG_PRINTF(MP_FFUINT_FMT ": perfect match (direct)\n", mantissa);
} else {
// In order to get the best possible representation, we will perform a
// dichotomic search for a reversible representation.
// This will also provide optimal rounding on the fly.
unsigned err_range = 1;
if (num_digits > SAFE_MANTISSA_DIGITS) {
err_range <<= 3 * (num_digits - SAFE_MANTISSA_DIGITS);
}
int maxruns = 3 + 3 * (MAX_MANTISSA_DIGITS - SAFE_MANTISSA_DIGITS);
while (maxruns-- > 0) {
// update mantissa according to dichotomic search
if (signbit(diff)) {
mantissa += err_range;
} else {
// mantissa is expected to always have more significant digits than err_range
assert(mantissa >= err_range);
mantissa -= err_range;
}
// retry conversion
reprlen = mp_format_mantissa(mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
assert(reprlen + 1 <= (int)buf_size);
DEBUG_PRINTF("input=%.19g, compare to float('%s')\n", (double)f, buf);
mp_parse_float_internal(buf, reprlen, &check);
DEBUG_PRINTF("check=%.19g num_digits=%d e=%d mantissa=" MP_FFUINT_FMT "\n", (double)check, num_digits, e, mantissa);
diff = fp_diff(check, f);
if (fp_iszero(diff)) {
// we have a perfect match
DEBUG_PRINTF(MP_FFUINT_FMT ": perfect match\n", mantissa);
break;
}
// keep track of our best estimate
mp_float_t delta = MICROPY_FLOAT_C_FUN(fabs)(diff) - MICROPY_FLOAT_C_FUN(fabs)(best_diff);
if (signbit(delta) || (fp_iszero(delta) && !(mantissa % 10u))) {
best_diff = diff;
best_mantissa = mantissa;
}
// string repr is not perfect: continue a dichotomic improvement
DEBUG_PRINTF(MP_FFUINT_FMT ": %.19g, err_range=%d\n", mantissa, (double)check, err_range);
if (err_range > 1) {
err_range >>= 1;
} else {
// We have tried all possible mantissa, without finding a reversible repr.
// Check if we have an alternate precision to try.
if (num_digits < max_digits) {
num_digits++;
DEBUG_PRINTF("Failed to find a perfect match, try with more digits (%d)\n", num_digits);
goto try_again;
}
// Otherwise, keep the closest one, which is either the first one or the last one.
if (mantissa == best_mantissa) {
// Last guess is the best one
DEBUG_PRINTF(MP_FFUINT_FMT ": last guess was the best one\n", mantissa);
} else {
// We had a better guess earlier
DEBUG_PRINTF(MP_FFUINT_FMT ": use best guess\n", mantissa);
reprlen = mp_format_mantissa(best_mantissa, mantissa_cap, buf, s, num_digits, max_exp_zeros, extra_zeros, dec, e, fmt_flags);
}
break;
}
}
}
#endif
return buf + reprlen - buf_entry;
}
#endif // MICROPY_FLOAT_IMPL != MICROPY_FLOAT_IMPL_NONE