85 lines
2.5 KiB
Python
85 lines
2.5 KiB
Python
|
|
import numpy as np
|
|
import time
|
|
from keras.datasets import mnist
|
|
from keras.models import Sequential
|
|
from keras.layers.core import Dense, Flatten, Dropout, Activation
|
|
from keras.utils import np_utils
|
|
import matplotlib.pyplot as plt
|
|
|
|
predictions = ['T-shirt/top', 'trouser', 'Pullover', 'Dress', 'Coat',
|
|
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
|
|
|
|
(X_train, y_train), (X_test, y_test) = mnist.load_data()
|
|
num_pixels = X_train.shape[1] * X_train.shape[2]
|
|
num_classes = 10
|
|
|
|
fig = plt.figure()
|
|
for i in range(9):
|
|
plt.subplot(3,3,i+1)
|
|
plt.tight_layout()
|
|
plt.imshow(X_test[i], cmap='gray', interpolation='none')
|
|
plt.title("Digit: %d" % (y_test[i]))
|
|
plt.xticks([])
|
|
plt.yticks([])
|
|
fig.show()
|
|
t1 = time.time()
|
|
|
|
X_train = X_train.reshape(60000, 784) / 255
|
|
X_test = X_test.reshape(10000, 784) / 255
|
|
X_train = X_train.astype('float32')
|
|
X_test = X_test.astype('float32')
|
|
|
|
# let's print the shape before we reshape and normalize
|
|
print("X_train shape", X_train.shape)
|
|
print("y_train shape", y_train.shape)
|
|
print("X_test shape", X_test.shape)
|
|
print("y_test shape", y_test.shape)
|
|
|
|
Y_train = np_utils.to_categorical(y_train, num_classes)
|
|
Y_test = np_utils.to_categorical(y_test, num_classes)
|
|
t2 = time.time()
|
|
print("Preprocessing took %.2f sec." % (t2 - t1))
|
|
|
|
t1 = time.time()
|
|
# building a linear stack of layers with the sequential model
|
|
model = Sequential()
|
|
model.add(Dense(512, input_shape = (784,)))
|
|
model.add(Activation('relu'))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(512))
|
|
model.add(Activation('relu'))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(10))
|
|
model.add(Activation('softmax'))
|
|
|
|
|
|
print("Training network ...")
|
|
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
|
|
|
print("Fitting data")
|
|
model.fit(X_train, Y_train, batch_size=128, epochs=15,
|
|
verbose=1, validation_data=(X_test, Y_test))
|
|
t2 = time.time()
|
|
print("Training took %.2f sec." % (t2 - t1))
|
|
|
|
print('Saving model and weights.')
|
|
model_json = model.to_json()
|
|
with open("mnist.json", "w") as json_file:
|
|
json_file.write(model_json)
|
|
model.save_weights('mnist.h5')
|
|
|
|
print("Making predictions...")
|
|
t3 = time.time()
|
|
for i in range(9):
|
|
img = np.array(X_test[i][np.newaxis,:])
|
|
preds = model.predict_classes(img)
|
|
print("Image[", i, "] - Me thinks me saw a : ", predictions[int(preds[0])] )
|
|
t4 = time.time()
|
|
print("Predictions took %.2f sec." % (t4 - t3))
|
|
|
|
print('Total running time %.2f sec' % (t4 - t1))
|
|
|
|
|
|
|