added Chapter07 (works for python3.x now)

This commit is contained in:
mp
2020-02-21 15:27:59 -08:00
parent 9d4547b2a3
commit 4f01fd2e9f
3 changed files with 157 additions and 0 deletions

96
Chapter07/conv_2d.py Executable file
View File

@@ -0,0 +1,96 @@
from __future__ import division
import pycuda.autoinit
from pycuda import gpuarray
import numpy as np
from skcuda import fft
from skcuda import linalg
from matplotlib import pyplot as plt
def cufft_conv(x , y):
x = x.astype(np.complex64)
y = y.astype(np.complex64)
if (x.shape != y.shape):
return -1
plan = fft.Plan(x.shape, np.complex64, np.complex64)
inverse_plan = fft.Plan(x.shape, np.complex64, np.complex64)
x_gpu = gpuarray.to_gpu(x)
y_gpu = gpuarray.to_gpu(y)
x_fft = gpuarray.empty_like(x_gpu, dtype=np.complex64)
y_fft = gpuarray.empty_like(y_gpu, dtype=np.complex64)
out_gpu = gpuarray.empty_like(x_gpu, dtype=np.complex64)
fft.fft(x_gpu, x_fft, plan)
fft.fft(y_gpu, y_fft, plan)
linalg.multiply(x_fft, y_fft, overwrite=True)
fft.ifft(y_fft, out_gpu, inverse_plan, scale=True)
conv_out = out_gpu.get()
return conv_out
def conv_2d(ker, img):
padded_ker = np.zeros( (img.shape[0] + 2*ker.shape[0], img.shape[1] + 2*ker.shape[1] )).astype(np.float32)
padded_ker[:ker.shape[0], :ker.shape[1]] = ker
padded_ker = np.roll(padded_ker, shift=-ker.shape[0]//2, axis=0)
padded_ker = np.roll(padded_ker, shift=-ker.shape[1]//2, axis=1)
padded_img = np.zeros_like(padded_ker).astype(np.float32)
padded_img[ker.shape[0]:-ker.shape[0], ker.shape[1]:-ker.shape[1]] = img
out_ = cufft_conv(padded_ker, padded_img)
output = out_[ker.shape[0]:-ker.shape[0], ker.shape[1]:-ker.shape[1]]
return output
gaussian_filter = lambda x, y, sigma : (1 / np.sqrt(2*np.pi*(sigma**2)) )*np.exp( -(x**2 + y**2) / (2 * (sigma**2) ))
def gaussian_ker(sigma):
ker_ = np.zeros((2*sigma+1, 2*sigma+1))
for i in range(2*sigma + 1):
for j in range(2*sigma + 1):
ker_[i,j] = gaussian_filter(i - sigma, j - sigma, sigma)
total_ = np.sum(ker_.ravel())
ker_ = ker_ / total_
return ker_
if __name__ == '__main__':
latte = np.float32(plt.imread('latte.jpg')) / 255
latte_blurred = np.zeros_like(latte)
ker = gaussian_ker(30)
for k in range(3):
latte_blurred[:,:,k] = conv_2d(ker, latte[:,:,k])
fig, (ax0, ax1) = plt.subplots(1,2)
fig.suptitle('Gaussian Filtering', fontsize=20)
ax0.set_title('Before')
ax0.axis('off')
ax0.imshow(latte)
ax1.set_title('After')
ax1.axis('off')
ax1.imshow(latte_blurred)
plt.tight_layout()
plt.subplots_adjust(top=.85)
plt.show()

61
Chapter07/cublas_gemm_flops.py Executable file
View File

@@ -0,0 +1,61 @@
import pycuda.autoinit
from pycuda import gpuarray
import numpy as np
from skcuda import cublas
from time import time
m = 5000
n = 10000
k = 10000
def compute_gflops(precision='S'):
if precision=='S':
float_type = 'float32'
elif precision=='D':
float_type = 'float64'
else:
return -1
A = np.random.randn(m, k).astype(float_type)
B = np.random.randn(k, n).astype(float_type)
C = np.random.randn(m, n).astype(float_type)
A_cm = A.T.copy()
B_cm = B.T.copy()
C_cm = C.T.copy()
A_gpu = gpuarray.to_gpu(A_cm)
B_gpu = gpuarray.to_gpu(B_cm)
C_gpu = gpuarray.to_gpu(C_cm)
alpha = np.random.randn()
beta = np.random.randn()
transa = cublas._CUBLAS_OP['N']
transb = cublas._CUBLAS_OP['N']
lda = m
ldb = k
ldc = m
t = time()
handle = cublas.cublasCreate()
exec('cublas.cublas%sgemm(handle, transa, transb, m, n, k, alpha, A_gpu.gpudata, lda, \
B_gpu.gpudata, ldb, beta, C_gpu.gpudata, ldc)' % precision)
cublas.cublasDestroy(handle)
t = time() - t
gflops = 2*m*n*(k+1)*(10**-9) / t
return gflops
if __name__ == '__main__':
print('Single-precision performance: %s GFLOPS' % compute_gflops('S'))
print('Double-precision performance: %s GFLOPS' % compute_gflops('D'))

BIN
Chapter07/latte.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB