This commit is contained in:
2020-09-18 19:35:39 +02:00
parent 17a0df87f5
commit 8a4e6b41b5
5 changed files with 4 additions and 4 deletions

View File

@@ -1,12 +1,12 @@
import numpy as np import numpy as np
import time import time
import matplotlib.pyplot as plt
import keras.models as km import keras.models as km
from keras.datasets import mnist from keras.datasets import mnist
from keras.models import Sequential from keras.models import Sequential
from keras.layers.core import Dense, Flatten, Dropout, Activation from keras.layers.core import Dense, Flatten, Dropout, Activation
from keras.utils import np_utils from keras.utils import np_utils
import matplotlib.pyplot as plt
predictions = ['T-shirt/top', 'trouser', 'Pullover', 'Dress', 'Coat', predictions = ['T-shirt/top', 'trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

BIN
mnist.h5

Binary file not shown.

View File

@@ -1 +1 @@
{"class_name": "Sequential", "config": {"name": "sequential_1", "layers": [{"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "batch_input_shape": [null, 784], "dtype": "float32", "units": 512, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_1", "trainable": true, "activation": "relu"}}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "units": 512, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "activation": "relu"}}, {"class_name": "Dropout", "config": {"name": "dropout_2", "trainable": true, "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_3", "trainable": true, "units": 10, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "VarianceScaling", "config": {"scale": 1.0, "mode": "fan_avg", "distribution": "uniform", "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_3", "trainable": true, "activation": "softmax"}}]}, "keras_version": "2.2.4", "backend": "tensorflow"} {"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": [null, 784], "dtype": "float32", "sparse": false, "ragged": false, "name": "dense_input"}}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "batch_input_shape": [null, 784], "dtype": "float32", "units": 512, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation", "trainable": true, "dtype": "float32", "activation": "relu"}}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 512, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_1", "trainable": true, "dtype": "float32", "activation": "relu"}}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 10, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Activation", "config": {"name": "activation_2", "trainable": true, "dtype": "float32", "activation": "softmax"}}]}, "keras_version": "2.4.0", "backend": "tensorflow"}

View File

@@ -1,11 +1,11 @@
import numpy as np import numpy as np
import time import time
import matplotlib.pyplot as plt
from keras.datasets import mnist from keras.datasets import mnist
from keras.models import Sequential from keras.models import Sequential
from keras.layers.core import Dense, Flatten, Dropout, Activation from keras.layers.core import Dense, Flatten, Dropout, Activation
from keras.utils import np_utils from keras.utils import np_utils
import matplotlib.pyplot as plt
(X_train, y_train), (X_test, y_test) = mnist.load_data() (X_train, y_train), (X_test, y_test) = mnist.load_data()
num_pixels = X_train.shape[1] * X_train.shape[2] num_pixels = X_train.shape[1] * X_train.shape[2]

View File

@@ -1,11 +1,11 @@
import numpy as np import numpy as np
import time import time
import matplotlib.pyplot as plt
from keras.datasets import mnist from keras.datasets import mnist
from keras.models import Sequential from keras.models import Sequential
from keras.layers.core import Dense, Flatten, Dropout, Activation from keras.layers.core import Dense, Flatten, Dropout, Activation
from keras.utils import np_utils from keras.utils import np_utils
import matplotlib.pyplot as plt
predictions = ['T-shirt/top', 'trouser', 'Pullover', 'Dress', 'Coat', predictions = ['T-shirt/top', 'trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']